Законы классической физики. Фундаментальные законы физики


Классическая физика понимается как фундаментальная база исследования макрообъектов. Для иллюстрации этого положения рассмотрим следующий пример. Как движется автомобиль? Поступательное движение поршней в цилиндрах преобразуется во вращательное движение колес. Колеса отталкиваются от поверхности дороги, и в результате автомобиль перемещается в пространстве по отношению к окружающим предметам. Все эти процессы изучает «Механика». Началом «цепочки» механических движений является движение поршня, который толкает газообразная смесь в камере сгорания. Процессы в газах изучает «Молекулярная физика». Часть энергии рабочей смеси преобразуется в энергию поршня, а часть «выбрасывается» в виде теплоты вместе с отработанными газами, расходуется на последующее сжатие рабочей смеси и т.д. Эти энергетические процессы, от которых зависят КПД и мощность двигателя, изучает «Термодинамика». Электромагнитные процессы в системе зажигания изучает «Электродинамика». Поскольку эти процессы формируются с помощью транзисторов микросхем и других устройств, которые основаны на квантовых явлениях, то они изучаются «Квантовой физикой».

Таким образом, движение автомобиля представляет собой сумму самых разных явлений. Различные специальные дисциплины изучают отдельные явления, агрегаты и узлы автомобиля. Это связано с их сложностью и привело к дифференциации науки. Однако самое первое описание движения автомобиля связано с основными законами классической физики.

Самый простой вид движения материи в макромире – это перемещение тел по отношению к другим телам. Для его описания используются основные понятия кинематики: движение, скорость, ускорение, относительность движения, система отсчета, материальная точка, траектория и т.п. и основные законы, объясняющие механическое движение, - законы Ньютона:

Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока оно не понуждается приложенными силами изменить это состояние. (Закон инерции).

Изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует (второй закон – главный закон динамики).

Действие всегда есть равное и противоположно направленное противодействие, т.е. взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны (третий закон).

Согласно законам механики – основной причиной движения является действие сил. Поэтому анализу понятия силы в классической физике уделяется большое внимание. Силы делятся на: силу упругости (она связана с деформацией тел) и силу трения. Природа этих сил связана с электрическим взаимодействием между атомами; силу тяготения (ее называют силой тяжести, под ее действием свободные тела падают на Землю). Сила тяготения часто проявляется в виде веса – силы, с которой тело действует на опору; силу инерции.

Существуют разные формы движения материи (механическая, тепловая, электрическая и т.д.), которые могут переходить друг в друга. Поэтому физика использует важнейшее понятие, выражающее меру перехода одних форм движения в другие, - это энергия. Важнейшие законы классической физики – законы сохранения:

Закон сохранения энергии: энергия не уничтожается и не создается, а может лишь переходить из одной формы в другую.

Закон сохранения импульса: если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

В современной физике эти важнейшие законы сохраняют свое фундаментальное значение, они выполняются всегда и везде, не только в макромире, но и в космосе и в микромире.

Несмотря на то, что классическая термодинамика была составной частью классической физики, однонаправленность тепловых процессов принципиально отличала их от механических. Любое механическое движение обратимо, т.е. может происходить как в прямом, так и в обратном направлении через те же промежуточные состояния: вращение маховика, качание маятника и т.п. При этом в уравнениях движения меняется лишь знак времени: вместо

t следует использовать –t. Это означает, что механическое движение симметрично по отношению к изменению знака времени. Тепловые процессы в этом смысле существенно отличаются: они необратимы, не симметричны по отношению к изменению знака времени. Время всегда течет в одну сторону, так называемая «стрела времени».

Все реальные процессы протекают с увеличением энтропии, т.е. ведут к установлению теплового равновесия. Из этого следует, что всякая упорядоченность в окружающем мире постепенно исчезает, плотности частиц и температуры выравниваются, энергия рассеивается, со временем прекращается вообще всякое направленное движение, всякая жизнь, останется только молекулярный хаос. Долгое время умы не только физиков, но и философов занимала идея тепловой смерти Вселенной.

Сосуществовавшие концепции описания природы – корпускулярная и континуальная – взаимоисключали друг друга, так как считалось, что они относятся к разным сферам реальности. Поэтому обнаружение двойственной природы у одних и тех же объектов означало для классической физики потрясение всех ее основ и получило название «кризиса физики».

Основные понятия темы:

Корпускулярная концепция природы описывает все явления и процессы природы как движение частиц.

Континуальная концепция природы описывает все явления и процессы как

Вещество – вид материи, обладающий корпускулярными свойствами.

Поле – вид материи, который представляет собой взаимодействие частиц и описывается длиной волны, фазой и амплитудой.

Динамические закономерности отображают объективную закономерность в форме однозначной связи физических величин, выражаемых количественно.

Статистические закономерности отображают объективную закономерность в форме результата взаимодействия большого числа элементов и поэтому характеризуют их поведение в целом.

Закрытые (замкнутые) системы – системы, которые не обмениваются со своим окружением ни массой, ни энергией.

Энтропия – мера беспорядка в системе.

I-е начало термодинамики – закон сохранения энергии.

II-е начало термодинамики – энтропия замкнутой системы постоянно возрастает.

«Тепловая смерть Вселенной» - направленность всех процессов во Вселенной к точке термодинамического равновесия.



Определение 1

Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

  • статику - рассматривает и описывает равновесие тел;
  • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
  • динамику – занимается исследованием движения материальных веществ.

Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

Основные законы классической механики

Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

  1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
  2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
  3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

Правила параллелограмма в механике

Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

Замечание 1

Таким образом, масса стала постепенно пониматься как количество живой материи.

Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

Границы применимости законов классической механики

Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

Замечание 2

Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.

Термин классическая физика относится к той физике, которая существовала до появления квантовой механики. Классическая физика включает ньютоновские законы движения частиц, теорию электромагнитного поля максвелла - Фарадея и общую теорию относительности Эйнштейна. Но это нечто большее, чем просто конкретные теории конкретных явлений; это ряд принципов и правил - базовая логика, подчиняющая себе все явления, для которых несущественна квантовая неопределенность
. Этот свод общих правил классической механикой называется.

Задача классической механики в предсказании будущего состоит. Великий физик восемнадцатого века Пьер - Симон Лаплас выразил это в знаменитой цитате:

"Состояние вселенной в данный момент можно рассматривать как следствие ее прошлого и как причину ее будущего. Мыслящее существо, которое в определенный момент знало бы все движущие силы природы и все положения всех объектов, из которых состоит мир, могло бы - если бы его разум был достаточно обширен для того, чтобы проанализировать все эти данные, - выразить одним уравнением движение и самых больших тел во вселенной, и мельчайших атомов; для такого интеллекта не осталось бы никакой неопределенности и будущее открылось бы перед его взором точно так же, как и прошлое. В классической физике, если вы знаете все о состоянии системы в некоторый определенный момент времени, а также знаете уравнения, определяющие изменения, происходящие в системе, вы можете предсказать будущее. Именно это мы имеем в виду, говоря, что классические законы физики детерминистичны.

Простые динамические системы и пространство состояний.

Совокупность объектов (частиц, полей, волн - чего угодно) называется системой. Систему, представляющую собой всю вселенную или настолько изолированную от всего остального, что она ведет себя так, будто ничего больше не существует, называют замкнутой.

Чтобы почувствовать, что такое детерминистичность и обратимость, мы начнем с очень простого примера замкнутых систем. Они значительно проще тех вещей, которые мы обычно изучаем в физике, но они подчиняются правилам, которые являются предельно упрощенным вариантом классической механики. Представьте себе абстрактный объект, имеющий лишь одно состояние. Можно, например, представить монету, приклеенную к столу, которая всегда показывает свой аверс. На жаргоне физиков совокупность всех состояний, занимаемых системой, называется пространством состояний. Это не обычное пространство; это математическое множество, элементы которого соответствуют возможным состояниям системы. В нашем случае пространство состояний содержит лишь одну точку, а именно аверс (или просто а), поскольку система имеет лишь одно состояние. Предсказать будущее такой системы чрезвычайно просто: с ней никогда ничего не происходит, и результатом любого наблюдения всегда будет а.

Следующая по простоте система имеет пространство состояний, содержащее две точки; в этом случае у нас имеется один абстрактный объект и два возможных состояния. Можете представлять себе монету, выпадающую либо аверсом, либо реверсом (а или Р) - рис. 1. в классической механике считается, что системы изменяются плавно, без прыжков или перерывов. Такое поведение называют непрерывным. Очевидно, что из состояния аверс нельзя непрерывно перейти в состояние реверс. Движение в данном случае неизбежно происходит дискретными скачками. Так что давайте предположим, что время тоже идет дискретными шагами, которые нумеруются целыми числами. Мир с такой дискретной эволюцией можно стробоскопическим назвать.

Система, которая с ходом времени изменяется, называется динамической. Динамическая система - это не только пространство состояний. Она также включает закон движения, или динамический закон. Это правило, которое говорит, какое состояние станет следующим после текущего.

Один из простейших динамических законов состоит в том, что состояние в следующий момент будет таким же, как сейчас. Тогда в нашем примере возможны две истории: а. и Р. другой динамический закон диктует, что каким бы ни было текущее состояние, следующее за ним будет противоположным. Можно нарисовать диаграммы, иллюстрирующие эти два закона. На рис. 2 показан первый закон, когда а всегда переходит в а и стрелка от Р идет к Р. и вновь будущее очень легко предсказать: если начать с а, система останется в состоянии а; если начать с Р, система останется в Р.

Диаграмма для второго возможного закона на рис представлена. 3, где стрелки идут от а к Р и от Р к а. будущее по-прежнему можно предсказывать. Например, если начать с а, то история будет: а Р а Р а Р а Р а Р. если же начать с Р, получится история: Р а Р а Р а Р а ….

Можно также записать эти динамические законы в виде формул. Переменные, описывающие систему, называются степенями свободы. У нашей монеты одна степень свободы, которую можно обозначить греческой буквой сигма. Сигма только два возможных значения имеет? = 1 и? = - 1 соответственно для а и Р. нам также нужен символ для обозначения времени. Когда рассматривается непрерывное течение времени, его принято обозначать t. но у нас эволюция дискретна, и мы будем использовать n. состояние в момент n обозначается выражением (n), то есть значение? В момент n. параметр n последовательно принимает значения всех натуральных чисел, начиная с 1.

Запишем уравнения эволюции для двух рассматриваемых законов. Первый из них гласит, что никаких изменений не происходит. Его уравнение - (n 1) = (n. другими словами, каким бы ни было значение? На n - м шаге, то же значение будет и на следующем шаге.

Второе уравнение эволюции имеет вид (n 1) = - (n), что означает перемену состояния на каждом шаге.

Поскольку в обоих случаях будущее поведение полностью детерминировано начальным состоянием, такие законы называются детерминистическими. Все фундаментальные законы классической механики - детерминистические.

Давайте ради интереса обобщим систему, увеличив число состояний. Вместо монеты можно использовать шестигранную игральную кость, имеющую шесть воз - можных состояний (рис. 4.

Теперь число возможных законов значительно возрастает и их становится нелегко описать словами и даже формулами. Проще всего рассмотреть диаграмму вроде приведенной на рис. 5. из нее видно, что номер состояния, заданный в момент n, увеличивается на единицу в следующий момент n 1. это работает, пока мы не дойдем до состояния 6, где диаграмма предписывает вернуться в состояние 1 и повторить процесс. Такая бесконечно повторяющаяся схема называется циклом. Например, если начать с состояния 3, то история будет иметь вид: 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, . назовем эту схему динамическим законом 1.

На рис. 6 показан другой закон - динамический закон 2. он выглядит несколько более запутанным, но логически он идентичен предыдущему: в обоих случаях система бесконечно обходит в цикле все шесть возможных состояний. Внимание! Только в том случае, если переименовать состояния, то динамический закон 2 станет точно таким же, как динамический закон 1.

Но не все законы логически эквивалентны. Рассмотрим, например, закон, показанный на рис. 7. этот динамический закон 3 имеет два цикла. Таким образом, если начать двигаться в одном из них, то невозможно попасть в другой. Тем не менее этот закон детерминистичен совершенно. С какого бы состояния вы ни начали, будущее остается предопределенным. Например, если начать с состояния 2, получится история: 2, 6, 1, 2, 6, 1, … и состояние 5 никогда не будет достигнуто. В случае если же начать с состояния 5, то история будет иметь вид: 5, 3, 4, 5, 3, 4, … и недостижимым окажется состояние 6.

На рис. 8 показан динамический закон 4 с тремя циклами.

Понадобилось бы много времени, чтобы нарисовать все возможные динамические законы в системе с шестью состояниями.

Правила, которые не разрешены: минус первый закон.

Согласно правилам классической физики допустимы не все законы. Для динамического закона недостаточно быть детерминистичным; он еще должен быть обратимым.

Смысл обратимости (в контексте физики) можно описать несколькими способами. Самый простой из них - сказать, что можно развернуть все стрелки и получившийся в результате закон останется детерминистичным. Другой способ - сказать, что закон детерминистичен как в прошлом, так и в будущем. Вспомним замечание Лапласа о том, что ". Для такого интеллекта не осталось бы никакой неопределенности, и будущее открылось бы перед его взором точно так же, как и прошлое". Можно ли придумать закон, который будет детерминистичным в будущем, но не в прошлом? Иными словами, можно ли привести пример необратимого закона? Да, можно. Рассмотрим рис. 9.

Закон, представленный на рис. 9, для любого состояния говорит, куда надо перейти дальше. В том случае, если вы находитесь в состоянии 1, то переходите в 2. если в 2, то в 3. если в 3, то в 2. нет никакой неоднозначности относительно будущего. Иное дело - прошлое. Допустим, вы находитесь в состоянии 2. где вы были в предыдущий момент? Вы могли прийти из состояния 3 или 1. диаграмма об этом ничего не говорит. Хуже того, если рассмотреть обратный закон, то окажется, что нет состояния, которое вело бы к 1; состояние 1 не имеет прошлого. Закон, изображенный на рис. 9, необратим. Он дает пример ситуации, запрещенной принципами классической физики.

Обратите внимание, что если развернуть стрелки на рис. 9, то получится закон, представленный рис. 10, который не может однозначно сказать, как двигаться в будущем.

Есть очень простое правило, говорящее, когда диаграмма представляет детерминистичный и обратимый закон. В случае если у каждого состояния есть ровно одна стрелка, ведущая к нему, и ровно одна стрелка, выходящая из него, то это допустимый детерминистичный обратимый закон. Сформулируем это в виде слогана: должна быть только одна стрелка, указывающая, откуда вы пришли, и только одна стрелка, указывающая, куда вам следует пойти.

Правило, согласно которому динамические законы должны быть детерминистичными и обратимыми, настолько важно для классической физики, что в учебных курсах о нем порой попросту забывают упомянуть. У него даже нет названия. Можно назвать его первым законом, но, к сожалению, у нас уже есть два первых закона - первый закон ньютона и первое начало термодинамики. Поэтому, чтобы обозначить приоритет, мы вынуждены будем отступить и обозначить этот принцип как минус первый закон, и это, несомненно, самый фундаментальный из всех физических законов - закон сохранения информации. Сохранение информации - это по сути правило, согласно которому у любого состояния есть одна входящая стрелка и одна исходящая. Тем самым гарантируется, что вы никогда не собьетесь с пути, откуда бы вы ни стартовали.

Динамические системы с бесконечным числом состояний.

До сих пор во всех наших примерах пространство состояний имело конечное число элементов. Но нет причин, мешающих нам рассмотреть динамическую систему с бесконечным числом состояний. Представьте себе, например, линию с бесконечным числом отдельных точек вдоль нее, подобно железнодорожной линии с бесконечной последовательностью станций в обоих направлениях. Допустим теперь, что некий маркер может в соответствии с некоторым правилом прыгать от одной точки к другой. Для описания такой системы мы пометим все точки вдоль линии целыми числами подобно тому, как нумеровали состояния в рассмотренных ранее примерах. Поскольку мы уже использовали букву n для дискретных шагов во времени, давайте использовать заглавную N для отслеживания маршрута. История маркера будет представлять собой функцию N (n), которая возвращает место N для каждого момента времени n. короткий участок этого пространства состояний изображен на рис. 11. очень простой динамический закон для такой системы показан на рис. 12. Он состоит в сдвиге маркера на одну позицию в положительном направлении с каждым шагом по времени.

Это правило допустимо, поскольку у каждого состояния только одна входящая стрелка и одна исходящая.

Такое правило нетрудно записать в форме уравнения:
(n 1) N = N (n) 1. (1).

А вот другие возможное правило:
(n 1) N = N (n) 2, (2).

По формуле (1), где бы ни началось движение, вы в конце концов доберетесь до любой точки, двигаясь либо в будущее, либо в прошлое. Можно сказать, что тут имеет место один бесконечный цикл. А вот по формуле (2), начав с нечетного значения N, вы никогда не попадете на четное, и наоборот. Поэтому мы говорим, что тут наличествуют два бесконечных цикла.

Можно также добавить к системе качественно иные состояния, создав с их участием дополнительные циклы, как показано на рис. 13. если начать с числа, то мы по-прежнему будем двигаться по верхней линии, как и на рис. 12. но если начать с буквы A или B, то мы закрутимся в цикле между ними. Так что возможна смешанная ситуация, когда в одних случаях мы обходим лишь некоторые состояния, а в других - движемся в бесконечность.

Циклы и законы сохранения.

Когда пространство состояний разделено на несколько циклов, система остается в том цикле, в котором начала движение. Каждый цикл имеет свой собственный динамический закон, но все они - часть одного пространства состояний, поскольку описывают одну динамическую систему. Рассмотрим систему с тремя циклами. Каждое из состояний 1 и 2 представляет собой отдельный цикл, а состояния 3 и 4 принадлежат третьему (рис. 14.

Всякий раз, когда динамический закон делит пространство состояний на подобные отдельные циклы, система "Запоминает", с какого состояния мы стартовали. Подобная память называется законом сохранения; он говорит нам, что нечто остается неизменным с течением времени. Чтобы придать закону сохранения количественную форму, припишем каждому циклу численное значение, обозначаемое Q. в примере на рис. 15 три цикла обозначены как Q = 1, Q = - 1 и Q = 0. каким бы ни было значение Q, оно всегда остается неизменным, поскольку динамический закон не позволяет перепрыгивать с одного цикла на другой. Проще говоря, значение Q сохраняется.

Пределы точности.

Лаплас был чрезмерно оптимистичен относительно предсказуемости мира даже в рамках классической физики. Он, конечно, согласился бы с тем, что для предсказания будущего потребуется идеальное знание управляющих миром динамических законов и чудовищная вычислительная мощь, которую он характеризовал как разум, который "Достаточно Обширен для Того, Чтобы Проанализировать все эти Данные". Но есть еще один момент, который он, возможно, недооценил: способность знать начальные условия с почти идеальной точностью. Представьте себе игральную кость с миллионом граней, которые помечены символами, похожими на обычные цифры, но слегка различающимися, так что получается миллион различимых меток. Таким образом, если знать динамический закон и суметь распознать начальную метку, то можно предсказать будущую историю кости. Но если титанический лапласовский интеллект страдает небольшими проблемами со зрением, из-за чего не различает очень похожие метки, то его предсказательная способность будет ограниченной.

В реальном мире все обстоит еще хуже; пространство состояний не просто необъятно по числу точек, оно непрерывно и бесконечно. Другими словами, оно размечено совокупностью вещественных чисел, вроде тех, что задают координаты частиц. Множество вещественных чисел столь плотно, что любое из них имеет бесконечное число сколь угодно близких соседей. Способность различать соседние значения этих чисел - это "Разрешающая Способность", характеризующая любой эксперимент, и для любого реального наблюдателя она ограничена. В большинстве случаев крошечные различия в начальных условиях (стартовом состоянии) приводят к значительным расхождениям в результатах. Это явление называют хаосом. Лишь в том случае, если система хаотическая (а таково большинство систем), то как бы велика ни была разрешающая способность, время, в течение которого система будет предсказуемой, ограничено. Идеальная предсказуемость недостижима просто потому, что мы ограничены в своей разрешающей способности. Л. сасскинд, Д. грабовски. Теоретический минимум.

Физические законы - это не то "как устроена природа на самом деле". Законы придумывают люди, наблюдая за природой. В одних случаях (микромир) природа ведёт себя одним образом, в других случаях (макромир, "обычный мир") - другим. Люди это наблюдают, подбирают подходящие формулы - и появляется закон.

Почему ньютоновский закон всемирного тяготения F = G * m1 * m2 / (r * r) таков? Как он работает? Вряд ли каждая планета, комета, астероид определяют на глаз все ближайшие объекты и с помощью какого-то встроенного калькулятора перемножают, складывают и так решают, куда им лететь. Нет, тут наверняка что-то другое. Но Ньютон не дал ответа на этот вопрос. Он сам не знал, почему планеты именно так себя ведут. Он просто как следует подумал - и догадался, что формула (написанная выше) сюда идеально подходит. Вот и весь закон.

А когда физики наблюдают за природой на квантовом уровне, они замечают, что здесь классические формулы неверны. Можно было бы, конечно, вычеркнуть всю ньютоновскую физику и сказать что "на самом деле" все эти формулы вот такие (если распространить законы квантового мира на большой мир, то получится как раз ньютоновская механика, только в гораздо более сложном виде). Но зачем отказываться от хороших, проверенных формул, если существует множество прикладных областей, где эти формулы удобнее?

P. S. К тому же есть ситуации, в которых квантовые законы совсем плохо подходят (считай, не подходят вообще) для расчётов. Я имею в виду известное "противостояние" теории относительности и квантовой физики. В случае с большими массами и большими скоростями квантовая физика не даёт нужный результат, который даёт теория относительности. А теория относительности, наоборот, не работает в микромире. Ожидаемо, что учёные пытаются разработать новую, универсальную теорию, которая сумеет "взять всё лучшее" из теории относительности и квантовой физики.

Ваш ответ в целом - не противоречит. Ответ в целом хороший.

Но вот фраза "с точки зрения современной науки, мир работает по одному единственному закону, который до сих пор не обнаружен" - это facepalm. Полагаю, таким образом вы сделали отсылку в сторону "теорий всего" (например, суперструнной теории). Но формулировка получилась, на мой взгляд, неудачная.

Это как говорить: "чёрные дыры существуют, но ни одной мы пока не нашли", "человек произошёл от обезьяны, но мы понятия не имеем как" и тому подобное.

Современная наука не может что-то категорично утверждать о том, что она ещё не открыла. Учёные - это люди, которые относятся к своим словам серьёзно. Не открыл, не проверил - помалкивай. Либо можно говорить "есть гипотезы, что", "у нас есть основания предполагать" и т. п. А не ультимативно "на самом деле есть, но мы этого никогда не видели".

Хорошая фраза могла бы быть такой "современная физика признаёт, что в существующих теориях есть пробелы, и учёные надеются устранить эти пробелы с помощью новой теории, которая сумеет объединить уже имеющиеся".

Вроде бы вы сказали то же самое, но ваша фраза задаёт другую тональность. По вашей фразе получается, что современная наука каким-то образом узнала (инсайдерская информация от бога-творца?), что есть некий закон, что вот он есть, но он спрятан ("не там ищете"). И учёные теперь знают, что закон есть ("мамой клянусь"), но никак не могут его пока найти.

Описанные выше динамические законы имеют универсальный характер, то есть они относятся ко всем без исключения изучаемым объектам. Отличительная особенность такого рода законов состоит в том, что предсказания, полученные на их основе, имеют достоверный и однозначный характер. Наряду с ними в естествознании в середине прошлого века были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Свое название эти законы получили от характера той информации, которая была использована для их формулировки. Вероятностными они назывались потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются достоверными и однозначными. Поскольку сама информация при этом носит статистический характер, часто такие законы называются также статистическими, и это их название получило в естествознании значительно большее распространение. Представления о закономерностях особого типа, в которых связи между величинами, входящими в теорию, неоднозначны, впервые ввел Максвелл в 1859 г. Он первым понял, что при рассмотрении систем, состоящих из огромного числа частиц, нужно ставить задачу совсем иначе, чем это делалось в механике Ньютона. Для этого Максвелл ввел в физику понятие вероятности, выработанное ранее математиками при анализе случайных явлений, в частности азартных игр .

Многочисленные физические и химические опыты показали, что в принципе невозможно не только проследить изменения импульса или положения одной молекулы на протяжении большого интервала времени, но и точно определить импульсы и координаты всех молекул газа или другого макроскопического тела в данный момент времени. Ведь число молекул или атомов в макроскопическом теле имеет порядок 1023. Из макроскопических условий, в которых находится газ (определенная температура, объем, давление и т.д.), не вытекают с необходимостью определенные значения импульсов и координат молекул. Их следует рассматривать как случайные величины, которые в данных макроскопических условиях могут принимать различные значения, подобно тому, как при бросании игральной кости может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при данном бросании кости, нельзя. Но вероятность выпадения, например, 5, можно подсчитать. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности, и ее введение не обусловлено лишь незнанием нами деталей течения объективных процессов. Так, для кости вероятность выпадения любого числа очков от 1 до 6 равно 1/6, что не зависит от познания этого процесса и потому есть явление объективное. На фоне множества случайных событий обнаруживается определенная закономерность, выражаемая числом. Это число - вероятность события - позволяет определять статистические средние значения (сумма отдельных значений всех величин, деленная на их число). Так, если бросить кость 300 раз, то среднее число выпадения пятерки будет равно 300 "Л = 50 раз. Причем совершенно безразлично, бросать одну и ту же кость или одновременно бросить 300 одинаковых костей . Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения, если только ставить задачу так же, как в теории игр, а не как в классической механике. Нужно отказаться, например, от неразрешимой задачи определения точного значения импульса молекулы в данный момент, а пытаться найти вероятность определенного значения этого импульса. Максвеллу удалось решить эту задачу. Статистический закон распределения молекул по импульсам оказался несложным. Но главная заслуга Максвелла состояла не в решении, а в самой постановке новой проблемы. Он ясно осознал, что случайное в данных макроскопических условиях поведение отдельных молекул подчинено определенному вероятностному (или статистическому) закону. После данного Максвеллом толчка молекулярно-кинетическая теория (или статистическая механика, как стали называть ее в дальнейшем) начала стремительно развиваться. Статистические законы и теории имеют следующие характерные черты. 1. В статистических теориях любое состояние представляет собой вероятностную характеристику системы. Это означает, что состояние в статистических теориях определяется не значениями физических величин, а статистическими (вероятностными) распределениями этих величин. Это принципиально иная характеристика состояния, чем в динамических теориях, где состояние задается значениями самих физических величин. 2. В статистических теориях по известному начальному состоянию в качестве результата однозначно определяются не сами значения физических величин, а вероятности этих значений внутри заданных интервалов. Тем самым однозначно определяются средние значения физических величин. Эти средние значения в статистических теориях играют ту же роль, что и сами физические величины в динамических теориях. Нахождение средних значений физических величин - главная задача статистических теории. Вероятностные характеристики состояния в статистических теориях отличны от характеристик состояния в динамических теориях. Тем не менее, динамические и статистические теории обнаруживают в самом существенном отношении замечательное единство. Эволюция состояния в статистических теориях однозначно определяется уравнениями движения, как и в динамических теориях. По заданному статистическому распределению (по заданной вероятности) в начальный момент времени уравнение движения однозначно определяет статистическое распределение (вероятность) в любой последующий момент времени, если известны энергия взаимодействия частиц друг с другом и с внешними телами. Однозначно определяются соответственно и средние значения всех физических величин. Здесь нет никакого отличия от динамических теорий в отношении однозначности результатов. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они вообще не могут быть выражены иначе, чем через однозначную связь состояний . На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но детерминизм в статистических закономерностях представляет более глубокую форму детерминизма в природе. В отличие от жесткого классического детерминизма он может быть назван вероятностным (или современным) детерминизмом. Статистические законы и теории являются более совершенной формой описания физических закономерностей, любой известный на сегодняшний день процесс в природе более точно описывается статистическими законами, чем динамическими. Однозначная связь состояний в статистических теориях говорит об их общности с динамическими теориями. Различие между ними в одном - способе фиксации (описания) состояния системы. Истинное, всеобъемлющее значение вероятностного детерминизма стало очевидным после создания квантовой механики - статистической теории, описывающей явления атомарного масштаба, то есть движение элементарных частиц и состоящих из них систем (другими статистическими теориями являются: статистическая теория неравновесных процессов, электронная теория, квантовая электродинамика). Современная физическая картина мира представляет собой систему фундаментальных знаний о закономерностях существования неорганической материи, об основаниях целостности и многообразия явлений природы. Современная физика исходит из ряда фундаментальных предпосылок: - во-первых, она признает объективное существование физического мира, однако отказывается от наглядности, законы современной физики не всегда демонстративны, в некоторых случаях их наглядное подтверждение - опыт - просто невозможен; - во-вторых, современная физика утверждает существование трех качественно различающихся структурных уровней материи: мегамир - мир космических объектов и систем; макромир - мир макроскопических тел, привычного мира нашего эмпирического опыта; микромир - мир микрообъектов, молекул, атомов, элементарных, частиц и т.п. Классическая физика изучала способы взаимодействия и строение макроскопических тел, законы классической механики описывают процессы макромира. Современная же физика (квантовая) занимается изучением микромира, соответственно законы квантовой механики описывают поведение микрочастиц. Мегамир - предмет астрономии и космологии, которые опираются на гипотезы, идеи и принципы неклассической (релятивистской и квантовой) физики; - в-третьих, неклассическая физика утверждает зависимость описания поведения физических объектов от условий наблюдения, т.е. от познающего эти процессы человека (принцип дополнительности);

В-четвертых, современная физика признает существование ограничений на описание состояния объекта (принцип неопределенности); - в-пятых, релятивистская физика отказывается от моделей и принципов механистического детерминизма, сформулированного в классической философии и предполагавшего возможность описать состояние мира в любой момент времени, опираясь на знание начальных условий. Процессы в микромире описываются статистическими закономерностями, а предсказания в квантовой физике носят вероятностный характер. При всех различиях современная физика, так же как и классическая механика, изучает законы существования природы. Закон понимается как объективная, необходимая, всеобщая повторяющаяся и существенная связь между явлениями и событиями. Любой закон имеет ограниченную сферу действия . Это верно с точки зрения современного естествознания, но верно ли «с точки зрения вечности?» Ведь научная теория покоится на некоторой конечной области фактов. Вместе с тем универсальная теория претендует на описание бесконечного множества опытных ситуаций во все времена и в любой области мира. Даже такой простой эмпирический закон, как утверждение: «все тела при нагревании расширяются», должен охватывать не только те объекты, которые имеются в распоряжении исследователя, но и любые другие макрообъекты. То же, но в еще большей степени относится к таким фундаментальным закономерностям, как законы механики или уравнения Максвелла. А раз так, никогда не может быть уверенности в универсальной истинности теории. Если «доказать» универсальную истинность теории невозможно, даже имея в распоряжении сколь угодно большое число подтверждающих ее опытных фактов, то для доказательства неуниверсальности теории может быть достаточно всего одного факта, который ей противоречит !

Основываясь на всем ходе развития познания в 20 в. и на известных ленинских положениях об абсолютности и относительности истины, можно выдвинуть следующий тезис: любая в принципе опровержимая на опыте (фальсифицируемая) теория не только может быть опровергнута, но рано или поздно фактически опровергается в ходе развития научного познания. Точнее говоря, обнаруживается ограниченность области применимости, то есть неуниверсальность этой теории. Как пишет известный американский физик Дэвид Бом, если теория «высовывает голову», ей рано или поздно ее отрубят. Это же можно сказать и о пространственно-временных постулатах. Если можно указать воображаемую опытную ситуацию, при которой отсутствует некоторое свойство пространства-времени, то когда-нибудь неуниверсальность этого свойства будет открыта и в реальном эксперименте. Мы вполне можем теоретически представить себе миры, в которых пространство многомерно, время имеет обратное (по отношению к нашему) направление и т. д. Мы также можем указать, чем отличались бы эксперименты в этих предполагаемых ситуациях от наших обычных экспериментов. Конечно, изложенное решение проблемы носит слишком общий характер, так как оно верно лишь «с точки зрения вечности». Не исключено, что неуниверсальность привычных для нас свойств времени и пространства обнаружится лишь в отдаленном будущем, скажем через столетия или даже тысячелетия. Поэтому всегда требуется кроме философского конкретный методологический анализ проблемы универсальности того или иного свойства, опирающийся на физическую картину мира и современные физические теории. Необходимо ввести представление о “методологически универсальных” принципах, которые входят в современную физическую картину мира и во все строящиеся на ее основе физические теории.

Итак, можно сделать следующий вывод. Как показывает развитие познания, любые конкретно-научные принципы и теории имеют ограниченную область применимости и рано или поздно заменяются другими, более общими и адекватными. В связи с этим не может быть создана окончательная физическая теория или окончательная картина мира, ибо одна картина мира в истории физики сменяется другой, более полной, и так без конца. Например, распространение законов механики, оправдывающих себя в пределах макромира, на уровень квантовых взаимодействий недопустимо. Процессы, происходящие в микромире, подчиняются другим законам. Проявление закона зависит также от конкретных условий, в которых он, этот мир, реализуется, изменение условий может усилить или, напротив, ослабить действие закона. Действие одного закона корректируется и видоизменяется другими законами. Динамические закономерности характеризуют поведение изолированных, индивидуальных объектов и позволяют установить точно определенную связь между отдельными состояниями предмета. Иначе говоря, динамические закономерности повторяются в каждом конкретном случае и имеют однозначный характер. Например, динамическими законами являются законы классической механики. Классическое естествознание абсолютизировало динамические закономерности. Совершенно верные представления о взаимной связи всех явлений и событий в философии 17 - 18 веков привели к неправильному выводу о существовании в мире всеобщей необходимости и об отсутствии случайности. Такая форма детерминизма получила название механистического. Механистический детерминизм говорит о том, что все типы взаимосвязи и взаимодействия механические и отрицает объективный характер случайности. Например, один из сторонников этого типа детерминизма, Б.Спиноза, считал, что мы называем явление случайным только вследствие недостатка наших знаний о нем. Следствием механистического детерминизма является фатализм - учение о всеобщей предопределенности явлений и событий, которое фактически сливается с верой в божественное предопределение. Проблема ограниченности механистического детерминизма особенно четко обозначилась в связи с открытиями в квантовой физике. Закономерности взаимодействий в микромире оказалось невозможным объяснить с точки зрения принципов механистического детерминизма. Сначала новые открытия в физике привели к отказу от детерминизма, однако позже способствовали формированию нового содержания этого принципа. Механистический детерминизм перестал ассоциироваться с детерминизмом вообще. М.Борн писал: «… что новейшая физика отбросила причинность, целиком необоснованно». Действительно, современная физика отбросила или видоизменила многие традиционные идеи; но она перестала бы быть наукой, если бы прекратила поиски причин явлений. Причинность, таким образом, не изгоняется из постклассической науки, однако представления о ней меняются. Следствием этого становятся трансформация принципа детерминизма и введение понятия статистических закономерностей. Статистические закономерности проявляются в массе явлений, и имеют форму тенденции. Эти законы иначе называют вероятностными, так как они описывают состояние индивидуального объекта лишь с определенной долей вероятности. Статистическая закономерность возникает в результате взаимодействия большого числа элементов, поэтому характеризует их поведение в целом. Необходимость в статистических закономерностях проявляется через действие множества случайных факторов. Этот тип законов иначе называют законами средних величин. При этом статистические закономерности, так же как и динамические, являются выражением детерминизма. Примерами статистических закономерностей являются законы квантовой механики и законы, действующие в обществе и истории. Понятие вероятности, фигурирующее при описании статистических закономерностей, выражает степень возможности явления или события в конкретной совокупности условий. Несмотря на то, что квантовая механика значительно отличается от классических теорий, общая для фундаментальных теорий структура сохраняется и здесь. Физические величины (координаты, импульсы, энергия, момент импульса и т.д.) остаются, в общем теми же, что и в классической механике. Основной величиной, характеризующей состояние, является комплексная волновая функция. Зная ее, можно вычислить вероятность обнаружения определенного значения не только координаты, но и любой другой физической величины, а также средние значения всех величин. Основное уравнение нерелятивистской квантовой механики - уравнение Шредингера - однозначно определяет эволюцию состояния системы во времени .