Три закона менделя по биологии кратко. Законы Менделя

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар — дигибридным , нескольких пар — полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 — гибриды первого поколения — прямые потомки родителей, F 2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F 1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян — доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

    Перейти к лекции №16 «Онтогенез многоклеточных животных, размножающихся половым способом»

    Перейти к лекции №18 «Сцепленное наследование»

Третий закон Менделя (независимого наследования признаков) – при скрещивании двух гомозиготных особей, отлича­ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Закон проявляется, как правило, для тех пар признаков, гены которых находятся вне гомологичных хромосомах. Если обозначить буквой и число аллельных пар в негомологичных хромосомах, то число фенотипических классов будет определяться формулой 2n, а число генотипических классов — 3n. При неполном доминировании количество фенотипических и генотипических классов совпадает.

Условия независимого наследования и комбинирования неаллельных генов.

Изучая рас­щепление при дигибридном скрещива­нии, Мендель обнаружил, что призна­ки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбиниро­вания признаков, формулируется сле­дующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтерна­тивных признаков, во втором поколе­нии F 2 ) наблюдается независимое на­следование и комбинирование призна­ков, если гены, определяющие их, рас­положены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбини­рование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению по­томков, несущих признаки в сочета­ниях, не свойственных родительским и прародительским особям. Вступают в брак дигетерозиготы по окраске глаз и способности лучше владеть правой рукой (АаВ b ). При формировании гамет аллель А может оказаться в одной гамете как с аллелем В, так и с аллелем b . Точно так же аллель а может попасть в одну гамету либо с аллелем В, либо с аллелем b . Следовательно, у дигетерозиготной особи образуются четыре возможные комбинации генов в гаметах: АВ, А b , аВ, а b . Всех типов гамет будет поров­ну (по 25%).

Это несложно объяснить поведением хромосом при мейозе. Негомологич­ные хромосомы при мейозе могут ком­бинироваться в любых сочетаниях, поэтому хромосома, несущая аллель А, равновероятно может отойти в гаме­ту как с хромосомой, несущей аллель В так и с хромосомой, несущей аллель b . Точно так же хромосома, несущая аллель а, может комбинироваться как с хромосомой, несущей аллель В, так и с хромосомой, несущей аллель b. Итак, дигетерозиготная особь обра­зует 4 типа гамет. Естественно, что при скрещивании этих гетерозигот­ных особей любая из четырех типов гамет одного родителя может быть оплодотворена любой из четырех ти­пов гамет, сформированных другим родителем, т. е. возможны 16 комби­наций. Такое же число комбинаций следует ожидать по законам комбина­торики.

При подсчете фенотипов, записанных на решетке Пеннета, оказывается, что из 16 возможных комбинаций во втором поколении в 9 реализуются два доминантных признака (АВ, в на­шем примере - кареглазые правши), в 3-первый признак доминантный, второй рецессивный b , в нашем при­мере - кареглазые левши), еще в 3 - первый признак рецессивный, вто­рой - доминантный (аВ, т. е. голубо­глазые правши), а в одной - оба при­знака рецессивные b , в данном слу­чае - голубоглазый левша). Произош­ло расщепление по фенотипу в соот­ношении 9:3:3:1.

Если при дигнбридном скрещивании во втором поколении последовательно провести подсчет полученных особей по каждому признаку в отдельности до результат получится такой же, как при моногчбридном скрещивании, т.e. 3: 1.

В нашем примере при расщеплении по окраске глаз получается соотно­шение: кареглазых 12/16, голубогла­зых 4/16, по другому признаку - правшей 12/16, левшей 4/16, т. е. известное соотношение 3:1.

Дигетерозигота образует четыре ти­па гамет, поэтому при скрещивании с рецессивной гомозиготой наблюдается четыре типа потомков; при этом рас­щепление как по фенотипу, так и по генотипу происходит в соотношении 1:1:1:1.

При подсчете фенотипов, получен­ных в этом случае, наблюдается рас­щепление в соотношении 27: 9: 9: 9: :3: 3: 3: 1. Это следствие того, что принятые нами во внимание признаки: способность лучше владеть правой рукой, окраска глаз и резус-фактор контролируются генами, локализован­ными в разных хромосомах, и вероят­ность встречи хромосомы, несущей ген А, с хромосомой, несущей ген В или R , зависит полностью от случайности, так как та же хромосома с геном А в равной степени могла встретиться с хромосомой, несущей ген b или r.

В более общей форме, при любых скрещиваниях, расщепление по фено­типу происходит по формуле (3 + 1) n , где п - число пар признаков, приня­тых во внимание при скрещивании.

Цитологические основы и универсальность законов Менделя.

1) парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)

2) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным пблюсам клетки, а затем и в разные гаметы)

3) особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Менделирующие признаки человека.

Доминантные признаки Рецессивные признаки
Волосы: темные вьющиеся не рыжие Волосы: светлые прямые рыжие
Глаза: карие большие Глаза:

маленькие

Близорукость Нормальное зрение
Ресницы длинные Ресницы короткие
Нос с горбинкой Прямой нос
Свободная мочка уха Приросшая мочка уха
Широкая щель между резцами Узкая щель между резцами или ее отсутствие
Полные губы Тонкие губы
Наличие веснушек Отсутствие веснушек
Шестипалость Нормальное строение конечностей
Лучшее владение правой рукой Лучшее владение левой рукой
Наличие пигмента Альбинизм
Положительный резус-фактор Отрицательный резус-фактор

Гибридизация - это скрещивание особей, отличающихся по генотипу. Скрещивание, при котором у родительских особей учитывается одна пара альтернативных признаков, называет­ся моногибридным, две пары признаков - дигибридным , более чем две пары - полигибридным .

Скрещивание животных и растений (гибридизация) про­водится человеком с незапамятных времен, однако устано­вить закономерности передачи наследственных признаков не удавалось. Гибридологический метод Г. Менделя, с помощью которого были выявлены эти закономерности, имеет следую­щие особенности:

▪ подбор пар для скрещивания ("чистые линии");

▪ анализ наследования отдельных альтернативных (взаи­моисключающих) признаков в ряду поколений;

▪ точный количественный учет потомков с различной ком­бинацией признаков (использование математических мето­дов).

Первый закон Менделя - закон единообразия гибридов перво­го поколения. Г. Мендель скрещивал чистые линии растений гороха с желтыми и зелеными семенами (альтернативные признаки). Чистые линии - это организмы, не дающие рас­щепления при скрещивании с такими же по генотипу, т. е, они являются гомозиготными по данному признаку:

При анализе результатов скрещивания оказалось, что все потомки (гибриды) в первом поколении одинаковы по фено­типу (все растения имели горошины желтого цвета) и по гено­типу (гетерозиготы). Первый закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, на­блюдается единообразие гибридов первого поколения как по фе­нотипу, так и по генотипу.

Второй закон Менделя - закон расщепления. При скрещива­нии гибридов первого поколения, т. е. гетерозиготных осо­бей, получается следующий результат:

Особи, содержащие доминантный ген А, имеют желтую окраску семян, а содержащие оба рецессивных гена - зеле­ную. Следовательно, соотношение особей по фенотипу (окрас­ке семян) - 3:1 (3 части с доминантным признаком и 1 часть - с рецессивным), по генотипу: 1 часть особей - желтые гомо­зиготы (АА), 2 части - желтые гетерозиготы (Аа) и 1 часть - зеленые гомозиготы (аа). Второй закон Менделя формулиру­ется следующим образом: при скрещивании гибридов первого поколения (гетерозиготных организмов), анализируемых по од­ной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

При экспериментальной и селекционной работе довольно часто возникает необходимость выяснить генотип особи с доми­нантным признаком. Для этого проводят анализирующее скрещи­вание : исследуемую особь скрещивают с рецессивной гомозиго­той. Если она была гомозиготной, то гибриды первого поколения будут единообразны - все потомки будут иметь доминантный

Закономерности наследования 79

признак. Если особь была гетерозиготна, то в результате скрещи­вания происходит расщепление признаков у потомков в соотно­шении 1:1:

Иногда (обычно при получении чистых линий) применя­ют возвратное скрещивание - скрещивание потомков с одним из родителей. В некоторых случаях (при изучении сцепления генов) проводят реципрокное скрещивание - скрещивание двух родительских особей (например, AaBb и aabb), при котором сначала гетерозиготной является материнская особь, а рецессивной - отцовская, а затем - наоборот (скрещивания Р: АаВb х aabb и Р: aabb х АаВb).

Изучив наследование одной пары аллелей, Мендель решил проследить наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: се­мена желтые гладкие и зеленые морщинистые. В результате такого скрещивания в первом поколении он получил расте­ния с желтыми гладкими семенами. Этот результат показал, что закон единообразия гибридов первого поколения прояв­ляется не только при моногибридном, но и при полигибрид­ном скрещивании, если родительские формы гомозиготны:

Затем Мендель скрестил гибриды первого поколения меж­ду собой - P(F 1): AaBb x AaBb.

Для анализа результатов полигибридного скрещивания обычно используют решетку Пеннета , в которой по горизон­тали записывают женские гаметы, а по вертикали - мужские:

В результате свободного комбинирования гамет в зиготах получаются разные сочетания генов. Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 частей растений с горошинами желтыми гладкими (А-Б-), 3 части - с желтыми морщинистыми (A-bb), 3 части - с зелеными гладкими (aaB-) и 1 часть - с зелеными морщинистыми (aabb), т. е. происхо­дит расщепление в соотношении 9:3:3:1, или (3+1) 2 . Отсюда можно сделать вывод, что при скрещивании гетерозиготных особей, анализируемых по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фено­типу в соотношении (3+1) n , где n - число анализируемых признаков.

Результаты скрещивания удобно записывать с помощью фенотипического радикала - краткой записи генотипа, сде­ланной на основе фенотипа. Например, запись А-В- означает, что если в генотипе есть хотя бы один доминантный ген из па­ры аллельных, то независимо от второго гена в фенотипе про­явится доминантный признак.

Если проанализировать расщепление по каждой из пар признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность), то получится 12 особей с желтыми (гладкими) и 4 особи с зелеными (морщинистыми) семенами. Их соотно­шение равно 12:4, или 3:1. Следовательно, при дигибридном скрещивании каждая пара признаков в потомстве дает рас­щепление независимо от другой пары. Это является результа­том случайного комбинирования генов (и соответствующих им признаков), что приводит к новым сочетаниям признаков, которых не было у родительских форм. В нашем примере, ис­ходные формы гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении получены растения не только с сочетанием родительских признаков, но и с новы­ми сочетаниями - желтыми морщинистыми и зелеными глад­кими семенами. Отсюда следует

Третий закон Менделя - закон независимого комбинирования признаков . При скрещивании гомозиготных организмов, анали­зируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Анализируя результаты расщепления признаков во втором поколении (появление рецессивных гомозигот), Мендель пришел к выводу, что в гетерозиготном состоянии наследст­венные факторы не смешиваются и не изменяют друг друга. В дальнейшем это представление получило цитологическое обоснование (расхождение гомологичных хромосом при мейозе) и было названо гипотезой "чистоты гамет" (У. Бэтсон, 1902). Ее можно свести к следующим двум основным положениям:

▪ у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;

▪ из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом и хроматид при мейозе.

Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т.е. они присущи всем живым орга­низмам. Для проявления законов Менделя необходимо со­блюдение следующих условий:

▪ гены разных аллельных пар должны находиться в разных парах гомологичных хромосом;

▪ между генами не должно быть сцепления и взаимодейст­вия, кроме полного доминирования;

▪ должна быть равная вероятность образования гамет и зи­гот разного типа, а также равная вероятность выживания ор­ганизмов с различными генотипами (не должно быть леталь­ных генов).

В основе независимого наследования генов разных аллель­ных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно не­зависимы друг от друга.

Отклонения от ожидаемого расщепления по законам Мен­деля вызывают летальные гены. Например, при скре­щивании гетерозиготных каракульских овец расщепление в F) составляет 2:1 (вместо ожидаемого 3:1). Ягнята, гомозигот­ные по доминантной аллели серой окраски (W), нежизнеспособны и погибают из-за недоразвития рубца желудка:

Аналогичным образом у человека наследуются брахидактилия и серповидно-клеточная анемия . Ген брахидактилии (ко­роткие толстые пальцы) - доминантный. У гетерозигот на­блюдается брахидактилия, а гомозиготы по этому гену поги­бают на ранних стадиях эмбриогенеза. У человека имеется ген нормального гемоглобина (НbA) и ген серповидно-клеточной анемии (НbS). Гетерозиготы по этим генам жизнеспособны, а гомозиготы по HbS погибают в раннем детском возрасте (ге­моглобин S не способен связывать и переносить кислород).

Затруднения в интерпретации результатов скрещивания (отклонения от законов Менделя) может вызвать и явление плейотропии, когда один ген отвечает за проявление не­скольких признаков. Так, у гомозиготных серых каракульских овец ген W детерминирует не только серую окраску шерсти, но и недоразвитие пищеварительной системы. Примерами плейотропного действия гена у человека являются синдромы Марфана и "голубых склер". При синдроме Марфана один ген вызывает развитие "паучьих пальцев", подвывих хрусталика, деформацию грудной клетки, аневризму аорты, высокий свод стопы. При синдроме "голубых склер" у человека наблюдают­ся голубая окраска склер, ломкость костей и пороки развития сердца.

При плейотропии, вероятно, наблюдается недостаточ­ность ферментов, активных в нескольких типах тканей или в одной, но широко распространенной. В основе синдрома Марфана, по-видимому, лежит один и тот же дефект развития соединительной ткани.

Все мы с Вами учились в школе и на уроках биологии в вполуха слушали про опыты на горохе фантастически дотошного священника Грегора Менделя. Наверное мало кто из будущих разведенцев догадывался, что эта информация когда-нибудь будет нужна и полезна.

Давайте вместе вспомним законы Менделя, справедливые не только для гороха, но и для всех живых организмов, включая и кошек.

Первый закон Менделя – закон единообразия гибридов первого поколения: при моногибридном скрещивании все потомство в первом поколении характеризуется единообразием по фенотипу и генотипу.

Рассмотрим в качестве иллюстрации первого закона Менделя скрещивание черной кошки, гомозиготной по гену черного окраса, то есть «ВВ» и шоколадного кота, так же гомозиготного по шоколадному окрасу, а значит - «вв».

При слиянии половых клеток и образовании зиготы каждый котенок получил от отца и от матери по половинному набору хромосом, которые объединившись дали обычный двойной (диплоидный) набор хромосом. То есть от матери каждый котенок получил доминантный аллель черного окраса «В», а от отца – рецессивный аллель шоколадного окраса «в». Проще говоря, каждый аллель из материнской пары умножается на каждый аллель отцовской пары – так мы получаем все возможные в данном случае варианты сочетаний аллелей родительских генов.

Таким образом все рожденные котята первого поколения у нас получились фенотипически черными, так как над шоколадным доминирует ген черного окраса. Однако все они являются носителями шоколадного окраса, который фенотипически у них не проявляется.

Второй закон Менделя формулируется так: при скрещивании гибридов первого поколения их потомство дает расщепление в соотношении 3:1 при полном доминировании и в соотношении 1:2:1 при промежуточном наследовании (неполное доминирование).

Рассмотрим этот закон на примере уже полученных нами черных котят. При скрещивании наших котят-однопометников мы увидим следующую картину:

F1: Вв х Вв
F2: Вв Вв Вв Вв

В результате такого скрещивания мы с вами получили трех фенотипически черных котят и одного шоколадного. Из трех черных котят один является гомозиготой по черному окрасу, а два других являются носителями шоколада. Фактически мы получили расщепление 3 к 1 (три черных и один шоколадный котенок). В случаях с неполным доминированием (когда гетерозигота слабее проявляет доминантный признак, чем гомозигота) расщепление будет выглядеть как 1-2-1. В нашем с Вами случае так же выглядит картина с учетом носителей шоколада.

Анализирующее скрещивание используется для выяснения гетерозиготности гибрида по той или иной паре признаков. При этом гибрид первого поколения скрещивается с родителем, гомозиготным по рецессивному гену (вв). Такое скрещивание необходимо потому, что в большинстве случаев гомозиготные особи (ВВ) фенотипически не отличаются от гетерозиготных (Вв)
1) гибридная особь гетерозиготная (Вв), фенотипически неотличимая от гомозиготной, в нашем случае черная, скрещивается с гомозиготной рецессивной особью (вв), т.е. шоколадным котом:
родительская пара: Вв х вв
распределение в F1: Вв Вв вв вв
т. е. в потомстве наблюдается расщепление 2:2 или 1:1, подтверждающее гетерозиготность испытуемой особи;
2) гибридная особь гомозиготна по доминантным признакам (ВВ):
Р: ВВ х вв
F1: Вв Вв Вв Вв – т.е. расщепления не происходит, а значит испытуемая особь гомозиготна.

Цель дигибридного скрещивания - проследить наследование двух пар признаков одновременно. При этом скрещивании Мендель установил еще одну важную закономерность – независимое наследование признаков или независимое расхождение аллелей и независимое их комбинирование, впоследствии названное третьим законом Менделя .

Для иллюстрации этого закона введем в нашу формулу черного и шоколадного окрасов ген осветления «d». В доминантном состоянии «D» ген осветления не работает и окрас остается интенсивным, в рецессивном гомозиготном состоянии «dd» окрас осветляется. Тогда генотип окраса черной кошки будет выглядеть как «ВВDD» (предположим, что она гомозиготна по интересующим нас признакам). Скрестим ее мы уже не с шоколадным, а с лиловым котом, который генетически выглядит как осветленный шоколадный окрас, то есть «ввdd». При скрещивании этих двух животных в первом поколении все котята получатся черными и их генотип по окрасу можно записать как ВвDd., т.е. все они будут носителями шоколадного гена «в» и гена осветления «d». Скрещивание таких гетерозиготных котят прекрасно продемонстрирует классическое расщепление 9-3-3-1, соответствующее третьему закону Менделя.

Для удобства оценки результатов дигибридного скрещивания используют решетку Пеннета, куда записывают все возможные варианты комбинации родительских аллелей (самая верхняя строка таблицы – пусть в нее будут записаны комбинации материнских аллелей, и крайний левый столбец – в него мы запишем отцовские комбинации аллелей). А так же все вероятные сочетания аллельных пар, которые могут получиться у потомков (они расположены в теле таблицы и получаются путем простого сочетания родительских аллелей на их пересечении в таблице).

Итак мы скрещиваем пару черных кошек с генотипами:

ВвDd х ВвDd

Запишем в таблицу все возможные сочетания родительских аллелей и возможные генотипы получаемых от них котят:

BD Bd bD bd
BD BBDD BBDd BbDD BbDd
Bd BBDd BBdd BbDd Bbdd
bD BbDD BbDd bbDD bbDd
bd BbDd Bbdd bbDd bbdd

Итак, мы с вами получили следующие результаты:
9 фенотипически черных котят – их генотипы BBDD (1), BBDd (2), BbDD (2), BbDd (3)
3 голубых котенка – их генотипы BBdd (1), Bbdd (2) (сочетание гена осветления с черным окрасом дает голубой окрас)
3 шоколадных котенка – их генотипы bbDD (1), bbDd (2) (рецессивная форма черного окраса – «в» в сочетании с доминантной формой аллеля гена осветления дает нам шоколадный окрас)
1 лиловый котенок – его генотип bbdd (сочетание шоколадного окраса с рецессивным гомозиготным геном осветления дает лиловый окрас)

Таким образом мы получили расщепление признаков по фенотипу в соотношении 9:3:3:1.

Важно подчеркнуть, что при этом выявились не только признаки родительских форм, но и новые комбинации, давшие нам в результате шоколадный, голубой и лиловый окрасы. Это скрещивание показало независимое наследование гена, отвечающего за осветленный окрас от непосредственно окраса шерсти.

Независимое комбинирование генов и основанное на нем расщепление в F2 в соотношении 9:3:3:1 возможно только при следующих условиях:
1) доминирование должно быть полным (при неполном доминировании и других формах взаимодействия генов числовые соотношения имеют иное выражение);
2) независимое расщепление справедливо для генов, локализованных в разных хромосомах.

Третий закон Менделя можно сформулировать так: аллели каждой аллельной пары отделяются в мейозе независимо от аллелей других пар, комбинируясь в гаметах случайно во всех возможных сочетаниях (при моногибридном скрещивании таких сочетаний было 4, при дигибридном - 16, при тригибридном скрещивании гетерозиготы образуют по 8 типов гамет, для которых возможны 64 сочетания, и т. д.).

Цитологические основы законов Менделя
(Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Цитологические основы базируются на:

  • парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)
  • особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным пблюсам клетки, а затем и в разные гаметы)
  • особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары) Дополнения к законам Менделя.

    Далеко не все результаты скрещиваний, обнаруженных при исследованиях укладывались в законы Менделя, отсюда и возникли дополнения к законам.

    Доминирующий признак в некоторых случаях может проявляться не полно или и вовсе отсутствовать. При этом имеет место та называемое промежуточное наследование, когда ни один из двух взаимодействующих генов не доминирует над другим и их действие проявляется в генотипе животного в равной степени, один признак как бы разбавляет другой.

    В качестве примера можно привести тонкинезийских кошек. При скрещивании сиамских кошек с бурманскими рождаются котята более темные, чем сиамы, но более светлые чем бурмы – такой промежуточный окрас получил название тонкинез.

    Наряду с промежуточным наследованием признаков наблюдается различное взаимодействие генов, то есть гены, отвечающие за одни признаки могут влиять на проявление других признаков:
    -взаимовлияние – например ослабление черного окраса под действием гена сиамского окраса у кошек, являющихся его носителями.
    -комплементарность – проявление признака возможно только под влиянием двух или более генов. Например, все табби окрасы проявляются только при наличии доминантного гена агути.
    -эпистаз – действие одного гена полностью скрывает действие другого. Например доминантный ген белого окраса (W) скрывает любой окрас и рисунок, его называют так же эпистатическим белым.
    -полимерия – на проявление одного признака влияет целая серия генов. Например – густота шерсти.
    -плейотропия – один ген влияет на проявление серии признаков. Например, все тот же ген белого окраса (W) сцепленный с голубым цветом глаз провоцирует развитие глухоты.

    Так же распространенным отклонением, не противоречащим однако законам Менделя, являются сцепленные гены. То есть ряд признаков наследуются в определенном сочетании. Примером могут служить гены, сцепленные с полом – крипторхизм (самки являются его носителями), красный окрас (он передается только по Х хромосоме).

  • Ученый из Чехии Грегор Мендель (1822-1884) в ходе своих исследований по скрещиванию разных сортов гороха выявил определенные закономерности, которые широко известны в настоящее время под названием трех законов Менделя.

    Первый закон

    Если экземпляры растений получены в первом поколении при скрещивании гомозиготных родительских сортов (чистых линий) с разными признаками, то потомки одинаковы по генотипу и фенотипу. Под признаком в данном случае понимают любое избранное качество растений, по которому можно различить два сорта. Первый закон Менделя еще известен как правило доминирования, или закон единообразия гибридов первого поколения. Признак, который был выявлен у первого поколения, получил название доминантного, а то качество, которое подавлялось и не проявилось, - рецессивного.

    Второй закон

    Закон расщепления. Его суть состоит в том, что при скрещивании, например, при самоопылении, однотипных гибридов первого поколения в последующем поколении происходит расщепление потомства по выбранному признаку (фенотипу) в соотношении 3:1 в случае полного доминирования и 1:2:1 при неполном доминировании.

    Третий закон

    В третьем законе Менделя идет речь о независимом наследовании признаков, или независимом сочетании генов растений. Если происходит скрещивание экземпляров растений, которые отличаются друг от друга по двум или нескольким парам альтернативных признаков, генетический материал и фенотипические признаки, которые им определяются, наследуются независимо друг от друга и могут сочетаться в любых комбинациях.

    Эксперименты чешского ученого стали базой для развития современной генетики. Г. Мендель сумел обнаружить основные закономерности наследования с помощью новейших на то время методических подходов, которыми и в настоящее время пользуются все генетики.

    В его экспериментах все скрещиваемые экземпляры относились к одному виду растений. Важно, что при этом они четко отличались друг от друга по одной, двум, нескольким парам альтернативних (противоположных) признаков. Данные признаки были постоянны, то есть передавались из поколения в поколение при скрещивании в пределах одного вида. Необходимо было исследовать потомство от каждой пары гибридов индивидуально и производить количественный учет гибридов, отличающимся по определенным парам альтернативных признаков.

    Данные приемы исследования были положены в основу нового гибридологического метода, с появлением которого началась эпоха изучения наследственности и изменчивости.