Общая физиология возбудимых тканей. Что такое лабильность? Что такое лабильность в физиологии

Лабильность, или функциональная подвижность ткани, была открыта Н. Е. Введенским в 1892 г.

Исследуя частоту возникновения волн возбуждения в зависимости от частоты наносимых раздражений, Н. Е. Введен ский установил, что возбудимая ткань может на частоту раздражения отвечать такой же частотой возникновения волн возбуждения только до определенного предела. Существует какой-то предел частоты раздражения, когда данная ткань уже не отвечает такой же частотой возбуждения. Обычно в этих условиях волны возбуждения возникают гораздо реже, чем частота наносимых раздражений, причем для каждой ткани или даже для той же ткани, находящейся в разных состояниях, существует свой предел.

Этот предел определяется длительностью рефрактерного периода. Рефрактерный период нерва, например, равен 0,002 секунды. Для того чтобы следующее раздражение могло вызвать возбуждение, оно должно попадать в ткань после того, как рефрактерный период, возникший от предыдущего раздражения, кончится. Таким образом, наибольшая частота раздражения, которая может быть нанесена нерву и им воспроизведена, будет 500 раздражении в секунду. Это максимальное количество раздражений, которое может вызвать такое же количество возбуждений. Есть ткани, у которых рефрактерный период более длинный, например мышца, у которой рефрактерный период длится 0,005 секунды. В этом случае предельная частота раздражений, вызывающих одинаковое количество волн возбуждения, не может быть более 200.

Длительность рефрактерного периода не является величиной постоянной. Она может изменяться в период нанесения частых раздражений. Идущие друг за другом, импульсы могут вызвать укорочение рефрактерного периода.

Мерой лабильности или функциональной подвижности считается наибольшее количество раздражений, на которое в ткани возникает такое же количество возбуждений. В наших примерах лабильность нерва будет равна 500, а мышцы - 200.

Статья на тему Лабильность

Раздел 1

  1. Физиология как наука. Основные этапы её развития. Значение исследований В.Гарвея, И.М. Сеченова, И.П. Павлова. Основные черты отечественной физиологии

Физиология – physis –природа, logos – учение.

Физиология – наука о функциях и процессах , протекающие в организме, а также механизмах их регуляции, обеспечивающих жизнедеятельность организма в его взаимодействии с окружающей средой.

Функция – специфическая деятельность органа или системы.

Например, одна из функций желудка – выделение желудочного сока.

Процесс – последовательная смена явлений или состояний (или совокупность последовательных действий), направленных на достижение определенного результата.

Например, процесс пищеварения происходит в желудочно-кишечном тракте. Вместе с тем, отдельные его этапы (механическая, химическая обработка, всасывание) происходят в различных отделах пищеварительного тракта.

Основные этапы развития физиологии:

1) до XVIIв. – первые физиологические знания, основанные на наблюдении

2) вторая половина XVIIв. – научные основы физиологии: Уильям Гарвей положил основу экспериментальной физиологии, первым провел живосечение и острый опыт – кратковременный физиологический опыт с рассечением тканей и наблюдением за процессами. Опыт сопровождается болевыми ощущениями и кровотечением, соответственно невозможностью длительного наблюдения. Гарвей изучал кровообращение.

3) Современный этап – вторая половина XIXв.: введён хронический опыт – длительное наблюдение в условиях приближенных к естественным, требующий хирургической подготовки животных. Работы И.М.Сеченова, И.П.Павлова в этой области были великой заслугой в физиологии и позволили изучить течение многих физиологических процессов в естественных условиях. Сеченов и Павлов разрабатывали учение о механизмах нервной деятельности. Павлова можно считать основателем современной физиологии целостного организма.

Основные черты отечественной физиологии:

1) развитие науки основывалось на диалектическом материализме: 1863г. – Сеченов написал книгу «Рефлексы головного мозга», в которой утверждал, что «все акты сознательной и бессознательной деятельности – рефлексы головного мозга», и что все проявления психической деятельности человека заканчиваются мышечными движениями

2) Эволюционное направление: Орбели – основал эволюционную физиологию. Сравнительная физиология – у организмов разной ступени развития. Представитель – Уголев. Развил теорию функциональных блоков: как только возникает целесообразный механизм, то его развитие прекращается и он переходит на другие уровни организации (например К,Na-АТФ-аза). Аршавский и Анохин рассматривали возрастную физиологию как особый раздел

3) Системный подход: П.К. Анохин разработал учение о функциональной системе – универсальной схеме регуляции физиологических процессов и поведенческих реакций организма. Раздражитель [ полезный результат

4) Нервизм: Павлов, Боткин. Главную роль в нейрогуморальной регуляции играет нервная система

5) Социальная направленность: физиология труда, спорта, авиации и космоса, физиология в медицинских ВУЗ-ах

2. Взаимосвязь физиологии с другими науками. Социальное значение физиологии. Роль её в организации ЗОЖ, значение для клинической медицины, её профилактического направления, формирования врачебного мышления

В основе физиологических процессов лежат законы химии и физики. Соответственно эти науки тесно связаны между собой.

Физиология дала много ответвлений: физиологическая химия, фармакология, патологическая физиология, иммунология, молекулярная биология и др.

Без знания физиологии невозможно изучать весь комплекс медицинских наук. В современной медицине существует два основных направления: лечебное , занимающееся исправлением уже имеющейся патологии в организме человека и профилактическое , занимающееся предупреждением развития тех или иных заболеваний у здорового человека. Основной наукой, организующей профилактическое направление, является гигиена .

Значение физиологии в образовании врача:

Интеграция знаний о жизнедеятельности организма человека

Доврачебная школа клинического мышления: проявление и протекание функций организма, механизмы компенсации нарушений

Формирование научных основ ЗОЖ (здорового образа жизни): рациональное питание, физиология мышечных нагрузок, терморегуляция и влияние различных температур

Формирование научных основ диагностики и лечения: нормы показателей и их интеграция

Научные основы лечения: нормализация физиологических процессов (например артериального давления)

  1. Аналитический и системный подход к изучению функций. Функциональные системы организма.

Функциональная система – динамическая саморегулирующаяся организация, все компоненты которой взаимодействуют и обеспечивают получение полезного результата. Анохин – основоположник теории функциональных систем. Судаков – ученик, продолжатель теории.

В организме выделяют функциональные системы . Это понятие было сформулировано академиком П.К.Анохиным (учеником И.П. Павлова). В настоящее время под функциональной системой понимают совокупность физиологических систем, отдельных органов и тканей, взаимодействующих ради получения конечного полезного для организма приспособительного результата . В качестве примера можно привести конечный полезный результат в виде адекватного обеспечения тканей нашего организма кислородом. Для достижения этого результата одновременно функционируют дыхательная система, система кровообращения и система крови (эритроцитарная система). Вот эти три системы и формируют функциональную систему обеспечения организма кислородом ! Выделяют и другие функциональные системы.

1) аппарат афферентного синтеза: мотивационное возбуждение (доминанта) – отбор значимых сигналов, обстановочная афферентация, память, пусковая афферентация – безусловные и условные раздражители

2) стадия принятия решения (лобные доли)

3) аппарат акцептора результата действия – в ассоциативной коре, кольцевое взаимодействие вставочных нейронов

4) стадия эфферентного синтеза – создание программы в пирамидных клетках коры

5) поведенческий акт действия, направленный на получение результата

6) стадия обратной афферентации – оценка результата. Возможна коррекция

  1. Физиология клетки. Строение и функция биологических мембран. Мембранный потенциал покоя и его происхождение.

Любую живую клетку отличает наличие обмена веществ, свойства раздражимости, а также ионной асимметрии внутренней среды клетки по сравнению с тканевой жидкостью.

Раздражимость - способность клетки или ткани в ответ на действие раздражителя изменять свой обмен веществ, проницаемость поверхностной мембраны, температуру, форму, двигательную активность и т.д.

В покое поверхностная мембрана клетки поляризована, т.е. внутренняя ее поверхность заряжена отрицательно по отношению к наружной. Эта разность потенциалов называется мембранным потенциалом покоя (МПП).

МПП клетки изменяется с ее возрастом. У молодой клетки он минимален по амплитуде, возрастает с возрастом и становится стабильным в зрелой клетке, а при ее старении вновь снижается. Во-вторых, МПП клетки может изменяться в связи с изменением ее функционального состояния (энергоресурсы, работа ионных насосов и т.д.), в связи с действием на нее факторов окружающей среды.

Возникновение МПП связано с ионной асимметрией и с разной проницаемостью поверхностной клеточной мембраны для различных ионов

Ионная асимметрия – это разная концентрация различных ионов по обе стороны поверхностной мембраны клетки, которая создается работой ионных насосов. Так, за счет Nа/К-насоса в клетке создается высокая концентрация ионов К + и низкая концентрация ионов Nа + по сравнению с межклеточной жидкостью. В поверхностной мембране есть селективные (специальные для различных ионов) каналы. Но одни каналы закрыты и через них, даже при наличии градиента концентрации, ионы не могут переходить из одной среды в другую, а через открытые каналы переход ионов может осуществляться. Например, натрий может поступать в клетку, а калий выходить из клетки по концентрационному градиенту.

Подавляющее большинство натриевых каналов мембраны закрыты, но незначительная их часть открыта. По этим каналам натрий медленно поступает в клетку, вызывая незначительную деполяризацию поверхностной мембраны. Поэтому открытые в состоянии покоя натриевые каналы иногда называют «медленными», тогда как закрытые называют «быстрыми», потому что если все они откроются, то натрий будет поступать в клетку очень быстро.

Незначительная часть калиевых каналов закрыта, но подавляющее большинство их открыты. Поэтому калий выходит из клетки по градиенту концентраций. Но выход калия из клетки ограничивается электрическим полем, которое создают сами ионы калия. Таким образом, электрохимический градиент между внутренней и наружной поверхностью мембраны клетки, находящейся в состоянии покоя, равен 0.

Основная причина формирования МПП – наличие калиевого градиента. Ионы калия, находящиеся внутри клетки, связаны с органическими анионами. Когда калий выходит из клетки по концентрационному градиенту, отрицательные ионы «стремятся» выйти вслед за ним. Но их размер и заряд (внутренние стенки ионных каналов заряжены отрицательно!) не позволяют им даже войти в канал. Поэтому анионы остаются на внутренней поверхности мембраны, таким образом, удерживая ионы калия на наружной поверхности мембраны. Благодаря этому формируется разность потенциалов. Ионы натрия через медленные натриевые каналы проникают в клетку и тем самым уменьшают величину МПП, созданного ионами калия. В создании МПП принимают участие также ионы хлора, что отражено в уравнении Гольдмана:

ПП= RT/F*ln (PKe*CKe+PNae*CNae+PCli*CCli)/(PKi*CKi+PNai*CNai+PCle*PCle)

Общие свойства возбудимых тканей. Критерии оценки возбудимости ткани. Виды раздражителей

Возбудимость – способность ткани в ответ на действие достаточного по силе раздражителя переходить из состояния покоя в состояние возбуждения.

возбудимостью обладают только нервная, мышечная и железистая ткани, которые относятся к возбудимым тканям . Эти ткани также обладают проводимостью и лабильностью (функциональной подвижностью).

Возбуждение – это активный физиологический процесс, возникающий только в возбудимых тканях и сопровождающийся перезарядкой наружной клеточной мембраны , изменением ее проницаемости, метаболизма клетки, температуры и др. Этот процесс не стоит на месте, а распространяется по всей поверхностной мембране клетки.

Если раздражитель достаточно силен дополнительно открываются закрытые ранее натриевые каналы. Причем, чем сильнее раздражитель, тем больше каналов открывается, а значит, происходит деполяризация поверхностной мембраны клетки бóльшей степени.

Раздражители бывают разные по силе: пороговые, допороговые (подпороговые) и сверхпороговые . При однократном действии возбуждение вызывают только пороговые и сверхпороговые раздражители. Однократное действие допорогового раздражителя не вызывает процесса возбуждения в ткани, находящейся в состоянии покоя.

Чем отличается потенциал действия при нанесении на клетку в одном случае порогового, а в другом сверхпорогового раздражителя? Амплитуда ПД в том и другом случае одинакова (см. вопрос 53 – закон «Все или ничего»). Но при действии сверхпороговых раздражителей частота возникновения потенциалов действия будет больше, чем при действии порогового раздражителя (см. учебник по нормальной физиологии – «Кодирование информации»).

Пороговая сила раздражителя - минимальная сила раздражителя, при действии которого в ткани возникает процесс возбуждения. Эту величину называют еще порог раздражения или порог возбуждения . Последнее понятие более правильное.

Порог возбуждения определяют, чтобы оценить возбудимость ткани . Чем меньше по величине порог возбуждения, тем ткань более возбудима. В медицине и в физиологии для воздействия на возбудимую ткань часто применяют постоянный ток. Для такого раздражителя порог возбуждения, выражаемый в вольтах, обозначается термином реобаза .

  1. Лабильность как свойство возбудимых тканей. Понятие о парабиозе (Введенский)

Лабильность, или функциональная подвижность – это способность ткани (клетки) воспроизводить навязанную ей извне частоту раздражений в виде последовательности потенциалов действия, следующих друг за другом без искажения частоты и ритма этих раздражений. Мерой лабильности является максимальная частота раздражений, которая воспроизводится тканью (клеткой) без искажения их частоты и ритма.

Способность ткани после ответа на один раздражитель ответить на последующий зависит от продолжительности периода рефрактерности

Чем дольше длится этот период, тем меньше лабильность ткани. Продолжительность периода рефрактерности, в свою очередь, зависит от продолжительности потенциала действия, в частности, фазы деполяризации, а продолжительность фазы деполяризации зависит от плотности расположения на поверхностной клеточной мембране натриевых каналов. Чем больше их плотность, тем быстрее проходит фаза деполяризации. Например, в вегетативной нервной системе плотность размещения натриевых каналов значительно ниже, чем в соматической нервной системе. Поэтому фаза деполяризации ПД растянута во времени, а значит, дольше длится рефрактерный период, что является причиной низкой лабильности структур вегетативной нервной системы

Парабиоз – это состояние, пограничное между жизнью и смертью клетки. Его ввел в физиологию возбудимых тканей проф. Н.Е.Введенский, изучая работу нервно-мышечного препарата при воздействии на него различных раздражителей

Это самые разнообразные повреждающие воздействия на возбудимую клетку (ткань), которые, не приводя к грубым структурным изменениям, в той или иной мере нарушают ее функциональное состояние. Такими причинами могут быть механические, термические, химические и другие раздражители

Под действием повреждающего агента клетка (ткань), не теряя структурной целостности, полностью прекращает функционировать. Это состояние развивается постепенно (фазно), по мере действия повреждающего фактора (то есть зависит от длительности или силы действующего раздражителя). Если повреждающий агент не убрать, то наступает биологическая смерть клетки (ткани). Если же этот агент вовремя убрать, то ткань (так же фазно) возвращается в нормальное состояние.

Для нервного волокна Н.Е.Введенский выделил три фазы, которые последовательно следуют друг за другом. Это уравнительная, парадоксальная и тормозная стадии. Тормозная стадия является собственно парабиозом. Дальнейшее действие повреждающего агента приводит к смерти ткани.

Н.Е.Введенский проводил опыты на нервно-мышечном препарате лягушки. В наиболее простом варианте его эксперимент можно представить в следующем виде. На седалищный нерв нервно-мышечного препарата последовательно наносились тестирующие раздражители разной силы. Один раздражитель был слабый (пороговой силы), то есть вызывал минимальное по величине сокращение икроножной мышцы. Другой раздражитель был сильный (оптимальный – см. оптимум силы раздражителя), то есть наименьшим из тех, которые вызывают максимальное сокращение икроножной мышцы.

Затем в точке Р на нерв наносился повреждающий агент и через несколько минут в чередовании повторялось тестирование нервно-мышечного препарата слабыми и сильными раздражителями. При этом последовательно развивались следующие стадии:

1) уравнительная , когда в ответ на слабый раздражитель величина сокращения мышцы не изменялась, а в ответ на сильный амплитуда сокращения мышцы резко уменьшалась и становилась такой же, как при ответе на слабый раздражитель;

2) парадоксальная , когда в ответ на слабый раздражитель величина сокращения мышцы оставалась прежней, а в ответ на сильный амплитуда сокращения становилась меньше, чем в ответ на слабый раздражитель, или мышца вообще не сокращалась;

3) тормозная , когда и на сильный и на слабый раздражители мышца не отвечала сокращением. Именно это состояние ткани и обозначается как парабиоз .

Объяснения Н.Е.Введенского с позиций современной физиологии выглядят следующим образом. Повреждающий агент, наносимый в точке Р вызывает функциональные нарушения в клетке (затрудняется открывание натриевых каналов из-за явления натриевой инактивации, замедляется работа Nа/К-насоса), в результате чего ПД, проходя через точку Р, растягивается по времени, а значит, увеличивается продолжительность периода рефрактерности. Это в свою очередь приводит к снижению лабильности клетки и затрудняет проведение возбуждения, возникшего от действия тестирующих стимулов. Причем проведение возбуждения, возникшего в ответ на слабый раздражитель, долгое время не нарушается, так как слабые раздражители трансформируются в нерве в последовательность импульсов, следующих с очень низкой частотой. Поэтому после прохождения каждого из этих редких импульсов ткань успевает полностью восстановить свою возбудимость, а значит, воспринимает и проводит следующий импульс

Проведение возбуждения, возникшего в ответ на сильный тестирующий раздражитель (это значительно большая частота импульсов!), быстро приводит к нарушению проведения возбуждения через точку Р, так как при высокой частоте импульсов клетка не успевает восстановить свою нормальную возбудимость после предыдущего импульса, а значит, не может беспрепятственно проводить последующий.

Парабиоз – это не только лабораторный феномен, а явление, которое при определенных условиях может развиваться в целостном организме. Например, парабиотические явления развиваются в мозге в состоянии сна. В патофизиологии шоковых состояний вы также встретитесь с явлением парабиоза. Следует отметить, что парабиоз как физиологический феномен, подчиняется общебиологическому закону силы, с отличием в том, что с усилением раздражителя ответная реакция ткани не увеличивается, а уменьшается.

7.Современное представление о процессе возбуждения. Потенциал действия, его фазы. Характер изменения возбудимости ткани при ее возбуждении. Локальный ответ.

В ПД различают фазу деполяризации, фазу реполяризации и следовые потенциалы.

Действие раздражителя приводит к неспецифическому ответу клетки в виде открывания натриевых каналов, что приводит к деполяризации мембраны. Это в свою очередь облегчает открывание все большего количества натриевых каналов, что еще сильнее деполяризует мембрану. Таким образом, деполяризация мембраны достигает определенной степени, при которой открываются все натриевые каналы

Эта степень деполяризации называется критическим уровнем деполяризации (КУД). При этом натрий начинает быстро проникать в клетку, доводя разность потенциалов между внутренней и наружной поверхностью мембраны до 0, а затем наступает перезарядка мембраны (инверсия потенциала), то есть внутренняя ее поверхность становится положительно заряженной относительно наружной. Но поступление ионов натрия в клетку не бесконечно. Оно ограничивается натриевой инактивацией (каналы не могут быть открытыми длительное время!). Кроме того, проникшие в клетку ионы натрия создают электрическое поле, препятствующее дальнейшему поступлению натрия

Каков механизм фазы реполяризации? В ответ на поступление ионов натрия в клетку быстро включаются два механизма, возвращающие исходную степень поляризации мембраны. Во-первых, открываются те калиевые каналы, которые были закрыты в состоянии покоя, и калий выходит из клетки в значительно бóльшем объеме, что уменьшает степень деполяризации поверхностной мембраны клетки. Во-вторых, активируется работа натрий-калиевого насоса, возвращающего исходную ионную асимметрию по обе стороны поверхностной мембраны клетки. Таким образом, происходит восстановление МПП.

Каков механизм следовых потенциалов? В идеале следовых потенциалов не должно быть, так как фаза реполяризации возвращает клетку в состояние покоя с исходным МПП и исходной возбудимостью. Но в реальности фаза реполяризации может растянуться по времени из-за недостаточно активной работы Nа/К-насоса и возникает следовая деполяризация (отрицательный следовой потенциал) (рис. 9А). Напротив, если работа Nа/К-насоса усилена, то возникает следовая гиперполяризация (положительный следовой потенциал) (рис. 9Б). Иногда эти потенциалы следуют друг за другом (рис. 9В).

Какова биологическая роль мембранного потенциала покоя и потенциала действия? Эти потенциалы являются индивидуальными характеристиками возбудимых клеток. У разных клеток они различаются по амплитуде, а ПД и по продолжительности (в целом, а также отдельных его фаз). Их амплитуда меняется на протяжении жизни клетки. У молодой клетки амплитуда их невелика, но с возрастом увеличивается и становится стабильной. При старении клетки их амплитуда вновь уменьшается. Величина МПП косвенно характеризует возбудимость клетки (через пороговый потенциал). С помощью ПД осуществляется кодирование информации в нервной системе. Посредством пространственно-временной совокупности ПД осуществляется рефлекторная (нервная) регуляция физиологических процессов.

Как меняется мембранный потенциал покоя возбудимой клетки при действии на нее допорогового раздражителя? На допороговые раздражители, не превышающие по своей силе 50% от величины порогового раздражителя, клетка не реагирует вообще. Эти раздражители слишком слабы для того, чтобы в ответ на них на поверхностной мембране клетки дополнительно открывались натриевые каналы (рис. 10).

На допороговые раздражители, составляющие по своей силе 50% и более от величины порогового раздражителя, в мембране клетки дополнительно открываются закрытые в состоянии покоя натриевые каналы. При этом возникает деполяризация поверхностной мембраны клетки, и она будет тем больше, чем сильнее действующий допороговый раздражитель. Эту деполяризацию обозначают термином «локальный ответ».

Объясните происхождение терминов «локальный» и «градуальный» ответ? Термин «локальный» означает, что возникающая под действием допорогового раздражителя деполяризация носит местный характер и не распространяется на соседние участки. Поэтому иногда употребляют термин «местный» ответ. Термин «градуальный» означает, что эта деполяризация тем больше, чем больше сила допорогового раздражителя («Закон силы раздражителя»).Как изменяется возбудимость клетки при действии на нее раздражителей? Однозначно ответить на этот вопрос нельзя, т.к. при действии разных по силе раздражителей возбудимость ткани изменяется по-разному или вообще не изменяется. Для ответа на этот вопрос следует иметь представление о пороговом потенциале и о причинах, влияющих на его величину.Что называется пороговым потенциалом? Это часть мембранного потенциала покоя (рис.11), на величину которой надо деполяризовать поверхностную мембрану клетки, чтобы достичь критического уровня деполяризации (то есть, чтобы возникло возбуждение).

Как изменится возбудимость клетки при действии на нее допороговых раздражителей? При действии допороговых раздражителей, составляющих менее 50% от величины порога раздражения, возбудимость клетки не изменяется (рис. 12, раздражители 1 и 2), так как не изменяется пороговый потенциал. Исключение составляет постоянный ток, так как катод и анод вызывают пассивные изменения МПП и порогового потенциала

При действии допороговых раздражителей, составляющих 50% и более от величины порога раздражения (рис.12, раздражители 3, 4, и 5), возбудимость клетки всегда повышается, т.к. пороговый потенциал уменьшается. Причем возбудимость будет тем больше, чем больше сила допорогового раздражителя.

Как изменится возбудимость клетки при действии на нее порогового и сверхпорогового раздражителя? Изменения возбудимости будут носить фазный характер в соответствии с фазами потенциала действия, который возникнет в том и другом случае (рис. 13). Сразу после действия раздражителя (пока деполяризация не достигла критического уровня) возбудимость будет возрастать, т.к. пороговый потенциал будет уменьшаться вплоть до достижения критического уровня деполяризации (рис.13А, а ). При достижении КУД возбудимость клетки исчезнет, т.к. все натриевые каналы будут открыты, и клетке нечем будет отвечать на действие даже очень сильного раздражителя (рис.13А, б ). Эта фаза называется абсолютной рефрактерностью , то есть ткань в это время полностью невозбудима. Она будет сопровождать всю фазу деполяризациии начальный период фазы реполяризации, который обусловлен усиленным выходом калия из клетки. После активизации Nа/К-насоса возбудимость клетки начинает восстанавливаться до исходного уровня. Эта фаза носит название относительной рефрактерности , то есть пониженной возбудимости (рис. 13А, в ). Она сопровождает фазу реполяризации до ее окончания. В этот промежуток времени достаточно сильный раздражитель (сверхпороговый) может вызвать повторный потенциал действия.

В фазу отрицательного следового потенциала возбудимость будет повышена, так как пороговый потенциал в это время снижен (рис.13Б, г ). Напротив, в фазу положительного следового потенциала возбудимость будет снижена, так как пороговый потенциал в это время становится больше, чем в состоянии покоя (рис.13В, г ).

Каков биологический смысл полной потери возбудимости клетки при ее возбуждении? Благодаря фазе абсолютной рефрактерности один ПД отделяется от другого, не сливаясь с предыдущим. Это обеспечивает возможность кодирования информации, которое осуществляется нервной клеткой для реализации регулирующих влияний на другие возбудимые клетки. Кроме того, благодаря фазе абсолютной рефрактерности, осуществляется одностороннее проведение возбуждения (см. ответ на вопрос 37).

Что называется проводимостью? Способность возбудимой клетки проводить возбуждение по поверхностной клеточной мембране на всем ее протяжении и передавать его на другие возбудимые клетки. Проводимостью обладают поверхностные мембраны нейронов, мышечных и секреторных клеток. Во всех этих структурах она существенно различается (по скорости проведения возбуждения).

Какова причина разной проводимости в различных возбудимых клетках? Скорость проведения возбуждения зависит от плотности расположения натриевых каналов на поверхностной мембране клетки. Чем она больше, тем выше скорость проведения возбуждения. В нервных волокнах на скорость проведения возбуждения существенно влияют его толщина и степень миелинизации. В связи с этим различают волокна типа А, В и С. Например, в волокнах типа Аα (диаметр 12-22 мкм, полностью покрыты миелиновой оболочной) скорость проведения наибольшая – 80-120 м/сек. Эти волокна проводят возбуждение от α-мотонейронов спинного мозга до миоцитов скелетных мышц. В волокнах типа С (диаметр – около 1 мкм, миелиновой оболочки не имеют) скорость проведения возбуждения наименьшая – 0,5-3 м/сек. Такие волокна проводят возбуждение, например, в постганглионарных волокнах вегетативной нервной системы (более подробно этот вопрос изложен в учебнике по нормальной физиологии).

Каков механизм проведения возбуждения? Рассмотрим его на схеме, поясняющей проведение возбуждения по безмиелиновому нервному волокну (рис.14). В точке а на клетку нанесено воздействие пороговым или сверхпороговым раздражителем (обозначено стрелкой), в результате чего поверхностная мембрана в этом месте перезарядилась (возник ПД). В соседнем участке мембраны (обозначим его точкой в ) мембрана еще остается поляризованной. Таким образом, на внутренней и наружной поверхности мембраны между точками а и в возникает разность потенциалов, которая сразу же приводит к передвижению ионов между ними, т.е. к возникновению локальных токов (рис.14А). Рассмотрим направление этих локальных токов в отношении положительно заряженных ионов (катионов). По наружной поверхности они движутся из точки в в точку а , а по внутренней поверхности – наоборот из точки а в точку в . За счет этих токов (достаточно сильных) в точке в возникает деполяризация поверхностной мембраны. Причем эта деполяризация достигает критического уровня и в точке в возникает ПД.

В то же самое время в точке а (рис. 14Б) нервное волокно находится в состоянии рефрактерности, связанной с ПД. Эта рефрактерность не позволяет возбуждению передвигаться из точки в назад в точку а , так как локальные токи не могут вызвать в точке а критический уровень деполяризации. Вместе с тем, локальные токи, протекающие между точкамив

  • I. Общие сведения о метрологии и измерении физических величин
  • II. Общие требования и правила оформления текстов исследовательских работ
  • II. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ
  • II. Общие требования к присвоению званий и процедура присвоения званий лицам командного состава морских судов

  • Н. Е. Введенский развил представление о лабильности, или функциональной подвижности (1892). Он определял физиологическую лабильность как скорость, с которой данная живая ткань успевает закончить полный период отдельного возбуждения во времени.

    А. А. Ухтомский считал, что мера лабильности - это наибольшее «число отдельных законченных периодов возбуждения, которое субстрат может вместить в единицу времени».

    Физиологическая лабильность - основное свойство живой ткани, определяющее ее функциональное состояние. Она характеризует изменения физиологического состояния живой ткани не при одиночной волне возбуждения, а ори взаимодействии целого ряда волн возбуждения, возникающих в определенном ритме, - ансамбля возбуждений. От лабильности зависит, будет ли живая ткань отвечать волной возбуждения на каждый импульс ритмического раздражения или она будет трансформировать частый ритм раздражения в более редкий, или такое трансформирование превратится в торможение, а торможение снова превратится в возбуждение.

    Чем больше возрастает частота импульсов раздражения, тем чаще становится ритм волн возбуждения. Максимальный ритм раздражения вызывает максимальный ритм возбуждения, который отличается большой неустойчивостью. Электрофизиологическими исследованиями установлено, что каждая живая ткань способна воспроизводить синхронно, т. е. соответственно ритму раздражения без трансформации торможения или утомления, характерный для нее оптимальный ритм раздражения.

    Максимальный ритм синхронизированного ответа на раздражение для одиночных двигательных нервных волокон лягушки около 300 в 1 с, оптимальный - 75 (реже 50) - 150 в 1 с, для мышечных волокон максимальный - 150 (реже 200) в 1 с, оптимальный - 20-50 в 1 с.

    Максимальный ритм проведения импульсов в двигательных нервах теплокровных больше 1000 в 1 с, а в нервных центрах-200-400 в 1 с. Н. Е. Введенский установил, что сами импульсы возбуждения способны изменять лабильность раздражаемой ткани, повышать ее и понижать.

    Физиологическая лабильность данной ткани зависит от силы и частоты импульсов возбуждения, поступающих к ней из Н, Е, Введенский центральной нервной системы, и от нервно-гуморальных влияний. Имеется зависимость между физиологической лабильностью и возбудимостью. Возбудимость ткани наивысшая при среднем, относительно невысоком уровне физиологической лабильности. Лабильность ткани тем больше, чем меньше времени необходимо для возникновения возбуждения при раздражении. Лабильность тем меньше, чем медленнее реагируют ткани на раздражение. Лабильность определяет не только минимальное время, необходимое для возникновения возбуждения, по и все время, необходимое для протекания возбуждения и для восстановления способности ткани давать новые, последующие импульсы возбуждения. Условия, понижающие жизнеспособность ткани (холод, нагревание, сильный электрический ток, механическое давление, наркотики солевые растворы и т. п.), уменьшают лабильность измененного (альтерированного) этими воздействиями участка нерва. Это уменьшение лабильности обусловлено тем, что под влиянием указанных воздействий замедляются восстановительные процессы.

    Различные группы нервных волокон обладают разной лабильностью. Лабильность одних и тех же нервных волокон колеблется в зависимости от их физиологического состояния.

    Возбудимость и ее динамика

    Мера возбудимости живой клетки определяется по двум показателям: 1) по наименьшей пороговой силе (интенсивности) раздражения, вызывающего возбуждение, которая называется порогом возбудимости, и 2) по наименьшему времени действия раздражителя определенной силы (интенсивности).

    Возбудимость каждой живой ткани изменяется в зависимости от условий и от ее физиологического состояния: например, при постепенном охлаждении, при смещении реакции крови в сторону кислотности она снижается, а при постепенном повышении температуры до 40°С и смещении реакции крови в сторону щелочности повышается.

    У животных с постоянной температурой тела исходный уровень возбудимости, характеризующий данную живую ткань, наблюдается при отсутствии утомления, при нормальной тела и нормальной реакции .

    Усвоение ритма

    Самый частый ритм пороговых и надпороговых раздражений, на который данная возбудимая ткань отвечает таким же частым ритмом волн возбуждения, отражает ее функциональное состояние или ее лабильность во время деятельности.

    А. А. Ухтомский создал представление об усвоении ритма (1928), согласно которому лабильность меняется все время в связи с деятельностью. Лабильность во время раздражения может повышаться или понижаться, что выражается в увеличении или уменьшении предельного ритма возбуждения. Это изменение лабильности вызывается тем. что сами импульсы, возбуждения способны изменить функциональное состояние возбуждаемой ткани. После действия каждого раздражающего импульса лабильность изменяется двухфазно: вначале она повышается, а затем падает. Лабильность зависит от силы и частоты падающих на ткань импульсов и от обмена веществ в ткани.

    Под влиянием работы лабильность повышается, что приводит к усвоению более высокого ритма, чем в начале работы. Усвоение ритма особенно отчетливо выступает на фоне повышенной возбудимости. Оно продолжается некоторое время после прекращения работы.

    Повышение физиологической лабильности в связи с деятельностью, которое проявляется в том, что возбудимая ткань отвечает более высоким ритмом возбуждения по сравнению с исходным ритмом, называется усвоением ритма. Усвоение ритма зависит от текущих изменений обмена веществ в ткани во время ее деятельности. После короткого раздражения мышцы ее лабильность повышается в течение нескольких минут, что можно объяснить действием продуктов .

    Термин интеллектуальная лабильность часто применяется по отношению к сотрудникам и может выявляться с помощью тестов.

    Термин применяется по отношению к подвижности и неустойчивости психических процессов, а также физиологических параметров организма – температуре тела, давлению и др. Для нервной системы главным показателем является соотношение показателей явлений торможения и возбудимости. Возбудимость – это реакция живой ткани на внешний раздражитель. Лабильность зависит от временных показателей восстановления работоспособности ткани в завершении серии новых возбуждений.

    В нашей стране этот термин разработан трудами русского физиолога Н.Е. Введенского в 1886 г. Профессором Н.Е Введенским сделал неоспоримым фактом такое явление, как различие в количестве ответной реакции на устойчивый ряд раздражителей. Также ему удалость выяснить низкую утомляемость нерва. Объясняется это малой затратой энергии нерва на раздражитель. Высокая лабильность также помогает снизить затраты энергии на реакцию от нервного возбуждения. Свойства подвижности изучал лабораторными способами И.П. Павлов. В это же время было вынесено предложение использовать ряд методов для диагностики подвижности. Эти методы предоставляли возможность установить быстроту выявления скорости и проблем в смене нервных действий на обратные по знаку и значению действия и процессы.

    Центростремительное и центробежное направление полученного возбуждения сказывается в виде появления реакции на возбуждение в областях нервных центров или рецепторов. Реакция на возбуждение может охватить всего одно нервное волокно, не касаясь других волокон. Быстрота возникновения реакции напрямую зависит от таких параметров, как диаметр волокна и особенности состава оболочки волокна. В толстом волокне реакция протекает быстрее.

    Быстрота реакции нервной деятельности напрямую связана с той скоростью, с которой протекает реакция нервной системы, возникающая при различных сигналах внешней среды. Степень развития лабильности нервных процессов – это диагностика сигнала в единичном случае, не поддавшейся внешней дифференциации. Подвижностью называют на дифференциальную серию сигналов, получившую нужную ответную реакцию. Подвижность различается по видам. Она может быть знаковой (различается по типам дорожных сигналов), цветовые (обычно в пример приводится цветовая кодировка сигналов светофора) и смысловые – набор слов и логических заключений независимо от их форм изложения). Раздражители также можно дифференцировать. Они могут восприниматься естественным образом при помощи органов человека – обоняния, носа, зрения, слуха и т.д. Такие раздражители можно отнести к адекватным. Неадекватные раздражители поддаются восприятию органов чувств только если раздражитель был силён и длился долгое время.

    Физиология возбудимых тканей изучает основные закономерности взаимодействия между организмом, его составляющими и действующими факторами внешней среды.

    Возбудимые ткани — специально приспособленные к осуществлению быстрых ответных реакций на действие раздражителя нервная ткань, железистая ткань и мышечная ткань.

    Человек и животные живут в мире света, звуков, запахов, действия сил гравитации, механических давлений, переменной температуры и прочих сигналов внешней или внутренней среды. Каждый из своего собственного опыта знает, что мы не только способны мгновенно воспринимать эти сигналы (называемые также раздражителями), но и реагировать на них. Это восприятие осуществляется структурами нервной ткани, а одной из форм реагирования на воспринятые сигналы являются двигательные реакции, осуществляемые мышечными тканями. В настоящей главе будут рассмотрены физиологические основы процессов и механизмов, обеспечивающих восприятие и реагирование организма на разнообразные сигналы внешней и внутренней среды.

    Важнейшими специализированными тканями организма, обеспечивающими восприятие сигналов и ответные реакции на действие разнообразных раздражителей, служат нервная и мышечная ткани, которые традиционно называют возбудимыми тканями. Однако истинно возбудимыми в них являются мышечные клетки и нейроны. Клетки же нейроглии, которых в мозге приблизительно в 10 раз больше, чем , не обладают возбудимостью.

    Возбудимость — способность клеток реагировать определенным образом на действие раздражителя.

    Возбуждение — активный физиологический процесс, ответная реакция возбудимых клеток, проявляющаяся генерацией потенциала действия, его проведением и для мышечных клеток сокращением.

    Возбудимость в эволюции клеток развилась из свойства раздражимости, присущей всем живым клеткам, и является частным случаем раздражимости.

    Раздражимость — это универсальное свойство клеток отвечать на действие раздражителя изменением процессов жизнедеятельности. Например, нейтрофильные , восприняв своими рецепторами действие специфического сигнала — антигена, прекращают движение в потоке крови, прикрепляются к стенке капилляра и мигрируют в направлении воспалительного процесса в ткани. Эпителий слизистой полости рта на действие раздражающих веществ реагирует увеличением выработки и выделения слизи, а эпителий кожи при воздействии ультрафиолетовых лучей накапливает защитный пигмент.

    Возбуждение проявляется специфическими и неспецифическими изменениями, регистрируемыми в клетке.

    Специфическим проявлением возбуждения для нервных клеток являются генерация и проведение потенциала действия (нервного импульса) на относительно большие расстояния без уменьшения его амплитуды, а для мышечных клеток — генерация, проведение потенциала действия и сокращение. Таким образом, ключевым показателем возникновения возбуждения является генерация потенциала действия. Признак наличия потенциала действия — перезарядка (инверсия знака заряда). При этом па короткое время поверхность мембраны вместо положительного, имеющегося в покое, приобретает отрицательный заряд. У клеток, не обладающих возбудимостью, при действий раздражителя разность потенциалов на клеточной мембране может лишь изменяться, но это не сопровождается перезарядкой мембраны.

    К неспецифическим проявлениям возбуждения нервных и мышечных клеток относят изменение проницаемости клеточных мембран для различных веществ, ускорение обмена веществ и соответственно увеличение поглощения клетками кислорода и выделения углекислого газа, снижение рН, возрастание температуры клетки и т.д. Эти проявления во многом сходны с компонентами ответной реакции на действие раздражителя невозбудимых клеток.

    Возбуждение может возникать под влиянием сигналов, поступающих из внешней среды, из микроокружения клетки, и спонтанно (автоматически) из-за изменения проницаемости клеточной мембраны и обменных процессов в клетке. О таких клетках говорят, что они обладают автоматией. Автоматия присуща клеткам водителя ритма сердца, гладким миоцитам стенок сосудов и кишечника.

    В эксперименте можно наблюдать развитие возбуждения при непосредственном воздействии раздражителей на нервную и мышечную ткани. Различают раздражители (сигналы) физической (температура, электрический ток, механические воздействия), химической ( , нейромедиаторы, цитокины, факторы роста, вкусовые, пахучие вещества) и физико- химической природы (осмотическое давление, рН).

    По признаку биологического соответствия раздражителей специализации сенсорных рецепторов, воспринимающих в организме воздействие этих раздражителей, последние делят на адекватные и неадекватные.

    Адекватные раздражители - раздражители, к восприятию которых рецепторы приспособлены и реагируют на малую силу воздействия. Например, адекватными для фоторецепторов и других клеток сетчатки глаза являются кванты света, ответная реакция на которые регистрируется в фоторецепторах сетчатки при поглощении лишь 1-4 квантов.

    Неадекватные раздражители не вызывают возбуждения даже при значительной силе воздействия. Лишь при чрезмерных, граничащих с повреждением, силах они могут вызвать возбуждение. Так, ощущение искр света может возникнуть при ударе в область глаза. При этом энергия механического, неадекватного раздражителя в миллиарды раз превышает величину энергии светового раздражителя, вызывающего ощущение света.

    Состояния клеток возбудимых тканей

    Все живые клетки обладают раздражимостью, т.е. способностью реагировать на различные стимулы и переходить из состояния физиологического покоя в состояние активности. Этот процесс сопровождается изменением обмена веществ, а дифференцированные ткани (нервная, мышечная, железистая), осуществляющие специфические функции (проведение нервного импульса, сокращение или выделение секрета), — еще и изменением электрического потенциала.

    Клетки возбудимых тканей могут находиться в трех различных состояниях (рис. 1). При этом клетки из состояния физиологического покоя могут переходить в активные состояния возбуждения или торможения, и наоборот. Клетки, находящиеся в состоянии возбуждения, могут переходить в состояние торможения, а из состояния торможения — в состояние возбуждения. Скорость перехода различных клеток или тканей из одного состояния в другое значительно различается. Так, двигательные нейроны спинного мозга могут от 200 до 300 раз в секунду переходить из состояния покоя в состояние возбуждения, тогда как вставочные нейроны — до 1000 раз.

    Рис. 1. Взаимосвязь между основными физиологическими состояниями клеток возбудимых тканей

    Физиологический покой — состояние, характеризующееся:

    • относительно постоянным уровнем обмена процессов;
    • отсутствием функциональных проявлений ткани.

    Активное состояние возникает под действием раздражителя и характеризуется:

    • выраженным изменением уровня обменных процессов;
    • проявлениями функциональных отправлений ткани.

    Возбуждение — активный физиологический процесс, возникающий под действием раздражителя, способствующий переходу ткани из состояния физиологического покоя к специфической деятельности (генерация нервного импульса, сокращение, секреция). Неспецифические признаки возбуждения:

    • изменение заряда мембраны;
    • повышение обменных процессов;
    • увеличение затраты энергии.

    Торможение — активный физиологический процесс, возникающий под действием определенного раздражителя и характеризующийся угнетением или прекращением функциональной активности ткани. Неспецифические признаки торможения:

    • изменение проницаемости клеточной мембраны;
    • изменение движения ионов через нее;
    • изменение заряда мембраны;
    • снижение уровня обменных процессов;
    • снижение затраты энергии.

    Основные свойства возбудимых тканей

    Любая живая ткань обладает следующими свойствами: возбудимостью, проводимостью и лабильностью.

    Возбудимость — способность ткани отвечать на действие раздражителей переходом в активное состояние. Возбудимость характерна для нервной, мышечной и железистой тканей. Возбудимость обратно пропорциональна силе действующего раздражителя: В = 1/S. Чем больше сила действующего раздражителя, тем меньше возбудимость, и наоборот. Возбудимость зависит от состояния обменных процессов и заряда клеточной мембраны. Невозбудимость = рефрактерность. Наибольшей возбудимостью обладает нервная ткань, затем поперечно-полосатая скелетная и сердечная мышечная ткань, железистая ткань.

    Проводимость — способность ткани проводить возбуждение в двух или одном направлении. Показателем проводимости является скорость проведения возбуждения (от 0,5 до 120 м/с в зависимости от ткани и строения волокна). Быстрее всего возбуждение передается по миелинизированному нервному волокну, затем по немиелинезированному волокну, и самой низкой проводимостью обладает синапс.

    Функциональная лабильность — способность ткани воспроизводить без искажения частоту ритмически наносимых импульсов. Показателем функциональной лабильности является количество импульсов, которое данная структура может передавать без искажения за единицу времени. Например, нерв — 500-1000 имп/с, мышца — 200-250 имп/с, синапс — 100-120 имп/с.

    Роль силы раздражится и времени его действия. Хронаксия - это временная характеристика возбудимости. Зависимость между пороговой интенсивностью раздражения и длительностью называют кривой силы длительности или кривой Гоорвега — Вейсса (рис. 2). Она имеет форму равносторонней гиперболы. На оси абсцисс откладывают время, на оси ординат — пороговую интенсивность раздражения.

    Рис. 2. Кривая силы длительности (Гоорвега — Вейсса)

    По оси абсцисс отложено время (t); по оси ординат — пороговая интенсивность раздражения (i); 0А — реобаза: 0В — двойная реобаза: ОД — хропаксия; 0Ж- полезное время

    Из рис. 2 можно видеть, что при слишком малой величине интенсивности раздражения (менее OA) ответная реакция не возникает при любой его длительности. Отсутствует реакция и при слишком малом времени действия раздражителя (менее ОГ). При интенсивности раздражения, соответствующей отрезку OA, возникает возбуждение при условии большей длительности действия раздражающего импульса. В пределах времени, определяемого отрезком ОЖ, имеет место зависимость между пороговой интенсивностью и длительностью раздражения: меньшей длительности раздражающего импульса соответствует большая пороговая интенсивность (отрезку ОД соответствует OB, а ОЕ — отрезку ОБ). За пределами этого времени (ОЖ) изменение длительности действия раздражителя уже не влияет на величину порога раздражения. Наименьшее время, в течение которого проявляется зависимость между пороговой интенсивностью раздражения и его длительностью, получило название полезного времени (отрезок ОЖ). Полезное время является временным показателем возбуждения. По его величине можно судить о функциональном состоянии различных возбудимых образований. Однако для определения полезного времени необходимо найти несколько точек кривой, для чего требуется наносить множество раздражений. Поэтому большое распространение получило определение другого временного показателя, который ввел в практику физиологических исследований Л. Лап и к (1907). Он предложил для характеристики скорости возникновения процесса возбуждения параметры: реобазу и хронаксию.

    Реобаза — это пороговая интенсивность раздражения при большой длительности его действия (отрезок OA); хронаксия - время, в течение которого должен действовать ток, равный двойной реобазе (ОВ), для получения порогового ответа (отрезок ОД). В течение этого времени происходит уменьшение мембранного потенциала до величины, соответствующей критическому уровню деполяризации. Для разных возбудимых образований величина хронаксии неодинакова. Так, хронаксия локтевого нерва человека составляет 0,36 мс, срединного — 0,26 мс, общего сгибателя пальцев — 0,22 мс, а общего разгибателя — 0,58 мс.

    Формула М. Вейса

    где I — пороговая сила тока; t — время действия раздражителя (с); а — константа, характеризующая постоянное время раздражения с момента, когда кривая переходит в прямую линию, идущую параллельно оси ординат; b — константа, соответствующая силе раздражения при постоянной его длительности, когда кривая переходит линию, идущую параллельно оси абсцисс.

    Показатели возбудимости

    Для оценки состояния возбудимости у человека и животных исследуют в эксперименте ряд ее показателей, которые указывают, с одной стороны, на какие раздражители реагирует возбудимая ткань, а с другой — как она реагирует на воздействия.

    Возбудимость нервных клеток, как правило, выше, чем мышечных. Уровень возбудимости зависит не только от вида клетки, но и от многочисленных факторов, влияющих на клетку и особенно на состояние се мембраны (проницаемости, поляризации и т.д.).

    К показателям возбудимости относят следующие.

    Порог силы раздражителя — это минимальная величина силы действующего раздражителя, достаточная для инициирования возбуждения. Раздражители, сила которых ниже пороговой, называют подпороговыми, а имеющие силу выше пороговой — над- или сверхпороговыми.

    Между возбудимостью и величиной порога силы имеется обратная зависимость. Чем на меньшие по силе воздействия возбудимая клетка или ткань реагирует развитием возбуждения, тем их возбудимость выше.

    Возбудимость ткани зависит от ее функционального состояния. При развитии патологических изменений в тканях их возбудимость может существенно понижаться. Таким образом, измерение порога силы раздражителя имеет диагностическую значимость и используется в электродиагностике заболеваний нервной и мышечной тканей. Одним из ее примеров может быть электродиагностика заболеваний пульпы зуба, получившая название электроодонтометрия.

    Электроодонтометрия (электроодонтодиагностика) — метод использования электрического тока с диагностической целью для определения возбудимости нервной ткани зубов (сенсорных рецепторов чувствительных нервов пульпы зубов). В пульпе зуба содержится большое количество чувствительных нервных окончаний, реагирующих на определенной силы механические, температурные и другие воздействия. При электроодонтометрии определяется порог ощущения действия электрического тока. Порог силы электрического тока для здоровых зубов составляет 2-6 мкА. при среднем и глубоком кариесе — 10-15, остром пульпите — 20-40, при гибели коронковой пульпы — 60, при гибели всей пульпы — 100 мкА и более.

    Величина пороговой силы раздражения возбудимой ткани зависит от продолжительности воздействия раздражителя.

    Это можно проверить в эксперименте при воздействии импульсов электрического тока на возбудимую ткань (нерв или мышцу), наблюдая, при каких значениях силы и продолжительности импульса электрического тока ткань отвечает возбуждением, а при каких значениях возбуждение не развивается. Если продолжительность воздействия будет очень короткой, то возбуждение в ткани может не возникнуть даже при сверхпороговых воздействиях. Если продолжительность действия раздражителя увеличивать, то ткань начнет реагировать возбуждением на более низкие по силе воздействия. Возбуждение возникнет при наименьшем по силе воздействии, если его длительность будет бесконечно большой. Зависимость между порогом силы и порогом времени раздражения, достаточными для развития возбуждения, описывается кривой «сила — длительность» (рис. 3).

    Рис. 3. Кривая «сила-длительность» (соотношения силы и длительности воздействия, необходимые для возникновения возбуждения). Ниже и слева от кривой — соотношения силы и длительности раздражителя, недостаточные для возбуждения, выше и справа — достаточные

    Специально для характеристики порога силы электрического тока, широко используемого в качестве раздражителя при исследовании ответных реакций тканей, введено понятие «реобаза». Реобаза — это минимальная сила электрического тока, необходимая для инициирования возбуждения, при длительном его воздействии на клетку или ткань. Дальнейшее удлинение раздражения практически не влияет на величину пороговой силы.

    Порог времени раздражения — минимальное время, в течении которого должен действовать раздражитель пороговой силы, чтобы вызвать возбуждение.

    Между возбудимостью и величиной порога времени также имеется обратная зависимость. Чем на меньшие по времени пороговые воздействия ткань реагирует развитием возбуждения, тем се возбудимость выше. Величина порогового времени для возбудимой ткани зависит от силы воздействия раздражителя, что видно на рис. 3.

    Хронаксия - минимальное время, в течение которого должен действовать раздражитель силой, равной двум реобазам, чтобы вызвать возбуждение (см. рис. 3). Этот показатель возбудимости также применяется для случая использования в качестве раздражителя электрического тока. Хронаксия нервных клеток и волокон скелетных мышц составляет десятитысячные доли секунды, а гладких мышц — в десятки раз больше. Хронаксия как показатель возбудимости используется для тестирования состояния и функциональных возможностей скелетных мышц и нервных волокон здорового человека (в частности, в спортивной медицине). Определение хронаксии имеет ценность для диагностики ряда заболеваний мышц и нервов, так как при этом возбудимость последних обычно снижается и хронаксия увеличивается.

    Минимальный градиент (крутизна ) нарастания силы раздражителя во времени. Это минимальная скорость увеличения силы раздражителя во времени, достаточная для инициирования возбуждения. Если сила раздражителя увеличивается очень медленно, то ткань приспосабливается к его действию и не отвечает возбуждением. Такое приспособление возбудимой ткани к медленно увеличивающейся силе раздражителя называют аккомодацией. Чем больше минимальный градиент, тем ниже возбудимость ткани и тем более выражена в ней способность к аккомодации. Практическая значимость этого показателя заключается в том, что при проведении различных медицинских манипуляций у человека в ряде случаев можно избежать развития сильных болевых ощущений и шоковых состояний, медленно изменяя скорость нарастания силы и время воздействия.

    Лабильность — функциональная подвижность возбудимой ткани. Лабильность определяется скоростью элементарных физико-химических превращений, лежащих в основе одиночного цикла возбуждения. Мерой лабильности является максимальное число циклов (волн) возбуждения, которые может генерировать ткань в единицу времени. Количественно величина лабильности определяется длительностью протекания одиночного никла возбуждения и длительностью фазы абсолютной рефрактерности. Так, вставочные нейроны спинного мозга могут воспроизводить более 500 циклов возбуждения или нервных импульсов в секунду. У них высокая лабильность. Мотонейроны, контролирующие сокращение мышц, характеризуются более низкой лабильностью и способны генерировать не более 100 нервных импульсов в секунду.

    Разность потенциалов (ΔЕ) между потенциалом покоя на мембране (Е 0) и критическим уровнем деполяризации мембраны (Е к). ΔЕ = (Е 0 - Е к) является одним из важнейших показателей возбудимости клетки. Этот показатель отражает физическую сущность порога силы раздражителя. Раздражитель является пороговым в случае, когда он способен сместить такой уровень поляризации мембраны до Е к, при достижении которого на мембране развивается процесс возбуждения. Чем меньше значение ΔЕ, тем выше возбудимость клетки и тем на более слабые воздействия она будет реагировать возбуждением. Однако показатель ΔЕ мало доступен для измерения в обычных условиях. Физиологическая значимость этого показателя будет рассмотрена при изучении природы мембранных потенциалов.

    Законы реагирования возбудимых тканей на раздражение

    Характер реагирования возбудимых тканей на действие раздражителей в классической принято описывать законами раздражения.

    Закон силы раздражения утверждает, что при увеличении силы надпорогового раздражителя до определенного предела возрастает и величина ответной реакции. Этот закон применим для ответной реакции сокращения целостной скелетной мышцы и суммарной электрической ответной реакции нервных стволов, включающих множество волокон, обладающих разной возбудимостью. Так, сила сокращения мышцы возрастает при увеличении силы воздействующего на нее раздражителя.

    Для тех же возбудимых структур применимы закон длительности раздражения и закон градиента раздражения. Закон длительности раздражения утверждает, что чем больше продолжительность надпорогового раздражения, тем больше величина ответной реакции. Естественно, что возрастание ответа идет только до определенного предела. Закон градиента раздражения - чем больше градиент нарастания силы раздражителя во времени, тем больше (до определенного предела) величина ответной реакции.

    Закон все или ничего утверждает, что при действии подпороговых раздражителей возбуждение не возникает, а при действии порогового и надпороговых раздражителей величина ответной реакции, обусловленной возбуждением, остается постоянной. Следовательно, уже на пороговый раздражитель, возбудимая структура отвечает максимально возможной для данного функционального состояния реакцией. Этому закону подчиняются одиночное нервное волокно, на мембране которого в ответ на действие порогового и надпорогового раздражителей генерируется потенциал действия одинаковых амплитуды и длительности. Закону «все или ничего» подчиняется реакция одиночного волокна скелетной мышцы, которое отвечает одинаковыми по амплитуде и продолжительности потенциалами действия и одинаковой силой сокращения как на пороговый, гак и на разные по силе надпороговые раздражители. Этому закону подчиняется также характер сокращения целостной мышцы желудочков сердца и предсердий.

    Закон полярного действия электрического тока (Пфлюгера) постулирует, что при действии на возбудимые клетки постоянного электрического тока в момент замыкания цепи возбуждение возникает в месте приложения катода, а при размыкании — в месте контакта с анодом. Само по себе длительное действие постоянного тока на возбудимые клетки и ткани не вызывает в них возбуждения. Невозможность инициирования возбуждения таким током можно рассматривать как следствие их аккомодации к неизменяющемуся во времени раздражителю с нулевой крутизной нарастания. Однако поскольку клеток поляризованы и на их внутренней поверхности имеется избыток отрицательных зарядов, а на внешней — положительных, то в области приложения к ткани анода (положительно заряженного электрода) под действием электрического поля часть положительных зарядов, представленных катионами К+ будет перемещаться внутрь клетки и их концентрация на внешней поверхности станет меньше. Это приведет к понижению возбудимости клеток и участка ткани под анодом. Обратные явления будут наблюдаться под катодом.

    Воздействие на живые ткани электрическим током и регистрация биоэлектрических токов часто используются в медицинской практике для диагностики и лечения и особенно при проведении экспериментальных физиологических исследований. Это вызвано тем, что величины биотоков отражают функциональное состояние тканей. Электрический ток обладает лечебным действием, легко дозируем по величине и времени воздействия, и его эффекты могут наблюдаться при силах воздействия, близких к естественным величинам биотоков в организме.