Модель математическая модель и математическое моделирование. Понятие математической модели

Модель - это такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты.

Математическая модель - модель, в которой для описания свойств и типичных черт объекта используются математические символы.

Покупая в магазине разные продукты, мы автоматически занимаемся простейшим математическим моделированием. Запомнив цену каждого продукта, мы (или кассир) складываем абстрактные числа, оплачиваем сумму и затем по каждому чеку (числу на чеке) получаем конкретный продукт.

Такую же простейшую схему математического моделирования мы много раз применяли в курсе алгебры при решении текстовых задач. Мы перекладывали практическую задачу на математический язык, решали математическую задачу, а затем интерпретировали математический результат.

Процесс математического моделирования - это процесс построения математической модели. Он состоит из следующих этапов:

Переложение практической задачи на математический язык: составление уравнений, неравенств, системы уравнений и неравенств и т. д.

Решение математической задачи: уравнения, неравенства, системы и т. д.

Интерпретация математического результата: переход от найденных чисел (корней уравнений, решений неравенств) к их практическому смыслу в данной задаче.

Проверка результата практикой.

Первые три этапа мы все применяли при решении текстовых алгебраических задач. И если мы не допустили ошибок, что проверяется непосредственно проверкой или по данным в учебнике ответам, то считается, что задача решена верно. При решении практических задач такого ответа не существует. Представьте себе, что решается сложная задача о конструировании самолета или не менее сложная экономическая задача. В таких случаях необходима проверка математических выводов экспериментом.

Чтобы проверить теоретические выводы о конструкции самолета, строят его модель - единственный (а не серийный) настоящий самолет - и сначала проверяют его испытанием в аэродинамической трубе. Затем проводят испытания в настоящем полете. Во время испытания выявляются недостатки, уточняются условия задачи, уточняются и проверяются все три этапа ее решения. Затем снова эксперимент, и так до получения хорошего для практики результата.

Таким образом, вырисовывается следующая схема математического моделирования:

Рассмотрим пример.

Задача. Два художника купили по одинаковому количеству краски. Первый из них половину всей краски купил по рублей за тюбик, а другую половину - по рублей за тюбик. Второй половину всех денег за покупку истратил на тюбики по рублей, а другую половину денег - на тюбики по рублей. Кто из них заплатил за покупку меньше?

Решение. I. Введем обозначения:

S - число тюбиков, купленных каждым художником;

х рублей - сумма, затраченная на покупку первым художником;

y рублей - сумма, затраченная на покупку вторым художником.

По условию задачи имеем:

S/2 + S/2 = x, (1)

y/ 2 + y/ 2 =S, (2)

Итак, нужно выяснить, какое из чисел, x или y, меньше другого, если положительные числа, x, y, S удовлетворяют равенствам (1), (2). Эта математическая задача и есть математическая модель данной практической задачи.

Приведем некоторые задачи, решаемые методом моделирования

Задача о рекламе. Средства массовой информации дают рекламные объявления для ускорения сбыта некоторой продукции, которая есть в продаже. Последующая информация о продукции распространяется среди покупателей посредством общения друг с другом. По какому закону распространяется известие о наличии этой продукции?

Решение. Пусть N число потенциальных покупателей данной продукции и в момент времени t об ее наличии в продаже знают х (t) покупателей. Хотя на самом деле число покупателей целое, но для абстрактной математической модели можно считать, что функция х (t) может принимать все значения от 0 до N.

Статистика показывает, что с большой степенью достоверности скорость изменения функции х (t) прямо пропорциональна как числу знающих о продукции, так и числу не знающих. Если условится, что время отсчитывается после рекламных объявлений, когда о товаре узнало N / человек, то приходим к дифференциальному уравнению

x (t) = kx(t)(N x(t)) (3)

с начальными условиями х = N / при t = 0. В уравнении (3) коэффициент k это положительный коэффициент пропорциональности, который определяется экспериментально и зависит от интенсивности рекламы и скорости распространения слухов.

Интегрируя уравнение (1), находим, что

1 / N ln (x /(N x)) = kt + С.

Полагая NC = C1, приходим к равенству

x / (N x) = AеNk t , где А = еC1 .

Если последнее уравнение разрешить относительно х, то получим соотношение

х (t) = N Aе Nkt / AеNkt + 1 = N / 1 + Ре Nkt , (4)

где Р = 1/ A.

Если учесть теперь начальные условия, то уравнение (4) перепишется в виде

х (t) = N / (1 + (1)Nkt

Задача (химия и технология производства). Через сосуд ёмкостью а литров, наполненный водным раствором некоторой соли, непрерывно протекает жидкость, причем в единицу времени втекает b литров чистой воды и вытекает такое же количество раствора.

Найти закон, по которому изменяется содержание соли в сосуде в зависимости от времени протекания жидкости через сосуд.

Решение: в данный момент времени t в сосуде содержится некоторое число x кг соли, а в b литрах кг.

Если бы в течение единицы времени, начиная с момента t , концентрация раствора оставалась неизменной, т.е. такой, какой она была в момент времени t, то количество соли в сосуде за эту единицу времени уменьшилось бы на кг; такова скорость уменьшения количества соли в сосуде для момента t.

С другой стороны, производная равна скорости прироста количества соли в момент t; значит, скорость уменьшения количества соли в момент t будет равна. Итак, имеем:

Разделим переменные: , откуда, или потенцируя,

(5), где - произвольная постоянная.

Предположим для определенности, что при t=0 количество соли в сосуде было равно c кг.

Полагая в формуле (5) t=0, найдем, что и получим окончательно, т.е. количество соли убывает с течением времени по «показательному» закону.

Задача (биология, процессы прироста). В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна наличному его количеству x. Первоначальное количество фермента было a. Через час оно удвоилось. Во сколько раз оно увеличится через 3 часа?

По условию дифференциальное уравнение процесса,

где k - коэффициент пропорциональности.

Разделяя переменные, получим: .

Отсюда, общее решение.

Найдем с из начального условия: при t=0, x=a. Отсюда, или c = a.

Подставляя в общее решение, получим частное решение задачи: .

Коэффициент пропорциональности определяем из данных дополнительных условий: при t=1час; x=2a.

Отсюда: , или. Подставляя в частное решение, получим закон рассматриваемого процесса: .

При t = 3часа, x = 8a. Следовательно, количество фермента спустя три часа увеличится в 8 раз.

Ответ: за три часа количество фермента увеличится в 8 раз.

Непосредственно из структуры принятого определения вытекают ряд общих свойств моделей, которые обычно принимаются во внимание в практике моделирования.

  • 1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются:
    • - субъект;
    • - задача, решаемая субъектом;
    • - объект-оригинал и язык описания или способ воспроизведения модели.

Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

  • 2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  • 3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  • 4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  • 5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  • 6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т. е., по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук.

В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

Свойства любой модели таковы:

  • - конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • - упрощенность: модель отображает только существенные стороны объекта;
  • - приблизительность: действительность отображается моделью грубо или приблизительно;
  • - адекватность: модель успешно описывает моделируемую систему;
  • - информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.

Классификация математических моделей. При проектировании технических объектов используют множество видов математических моделей. В этой связи различают математические модели элементов и систем. При переходе к более высокому иерархическому уровню блочного структурирования система низшего уровня становится элементом системы нового уровня, и наоборот, при переходе к низшему уровню элемент становится системой. Следовательно, на низших уровнях используют наиболее сложные математические модели.

На высших уровнях могут быть с успехом применены более простые модели. Их можно получить путем аппроксимации моделей низших иерархических уровней.

В общем случае уравнения математической модели связывают физические величины, которые характеризуют состояние объекта и не относятся к перечисленным выше выходным, внутренним и внешним параметрам. Такими величинами являются: скорости и силы - в механических системах. Величины, характеризующие состояние технического объекта в процессе его функционирования, называют фазовыми переменными (фазовыми координатами).

Вектор фазовых переменных задает точку в пространстве, называемом фазовым пространством. К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Эти требования противоречивы, поэтому обычно для проектирования каждого объекта используют свою оригинальную модель. Модель считается адекватной, если отражает исследуемые свойства с приемлемой точностью.

Точность оценивается степенью совпадения предсказанных в процессе вычислительного эксперимента на модели значений выходных параметров с истинными их значениями. При этом математическая модель должна быть как можно проще, но в то же время обеспечивать адекватное описание анализируемого процесса.

Классификация математических моделей, используемых при проектировании технических систем, приведена на рисунке.

Рисунок 1. - Классификация математических моделей:

По форме представления математических моделей различают инвариантную, алгоритмическую, аналитическую и графическую модели объекта проектирования.

В инвариантной форме математическая модель представляется системой уравнений (дифференциальных, алгебраических), вне связи с методом решения этих уравнений.

В алгоритмической форме соотношения модели связаны с выбранным численным методом решения и записаны в виде алгоритма последовательности вычислений.

Аналитическая модель представляет собой явные зависимости искомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров).

Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диаграмм и т. п.

Среди алгоритмических, моделей выделяют имитационные модели, предназначенные для имитации физических и информационных процессов, протекающих и объекте при функционировании его под воздействием различных факторов внешней среды.

Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей называются морфологическими переменными.

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Они учитывают структурные и функциональные свойства и объекта и позволяют решать задачи как параметрического, так и структурного синтеза.

По способам получения функциональные математические модели делятся на теоретические и экспериментальные.

Теоретические модели получают на основе описания физических процессов функционирования объекта, а экспериментальные - на основе изучения поведения объекта во внешней среде, рассматривая его как кибернетический черный ящик. Эксперименты при о том могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели).

При построении теоретических моделей используют физический и формальный подходы.

Физический подход сводится к непосредственному применению физических законов для описания объектов, например, законов Ньютона, Гука, Кирхгофа, Фурье и др.

Формальный подход использует общие математические принципы и применяется при построении как теоретических, так и экспериментальных моделей.

Функциональные математические модели могут быть линейные и нелинейные.

Линейные модели содержат только линейные функции фазовых переменных и их производных. Математические модели таких объектов включают нелинейные функции фазовых переменных и (или) их производных и относятся к нелинейным.

Если при моделировании учитываются инерционные свойства технического объекта и (или) изменение во времени параметров объекта или внешней среды, то модель называют динамической. В противном случае модель статическая.

Большинство проектных процедур выполняется на детерминированных моделях. Детерминированная математическая модель характеризуется взаимно однозначным соответствием между внешним воздействием на динамическую систему и ее реакцией на это воздействие. В вычислительном эксперименте при проектировании обычно задают некоторые стандартные типовые воздействия на объект: ступенчатыми, импульсными, гармоническими, кусочно-линейными, экспоненциальными и др.

Их называют тестовыми воздействиями.

Основные признаки классификации и типы ММ, применяемые в САПР, даны в таблице 1.

Таблица 1.

Признак классификации

Математические модели

Характер отображаемых свойств объекта

Структурные; функциональные

Принадлежность к иерархическому уровню

Микроуровня; макроуровня; метауровня

Степень детализации описания внутри одного уровня

Полные; макромодели

Способ представления свойств объекта

Аналитические, алгоритмиче­ские, имитационные

Способ получения модели

Теоретические, эмпирические

По характеру отображаемых свойств объекта ММ делятся на структурные и функциональные .

Структурные ММ предназначены для отображения структурных свойств объекта. Различают структурные ММ топологические и геометрические .

В топологических ММ отображаются состав и взаимосвязи элементов объекта. Топологические модели могут иметь форму графов, таблиц (матриц), списков и т. п.

В геометрических ММ отображаются геометрические свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; алгебрологических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов и т. п.

Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры, т.е. алгоритм вычисления вектора выходных параметров Y при заданных векторах параметров элементов X и внешних параметров Q .

Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако для большинства предметных областей можно отнести имеющиеся иерархические уровни к одному из трех обобщенных уровней, называемых далее микро -, макро - и метауровнями .

В зависимости от места в иерархии описаний математические модели делятся на ММ, относящиеся к микро -, макро - и метауровням .

Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывных пространстве и времени. Типичные ММ на микроуровне - дифференциальные уравнения в частных производных (ДУЧП).

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить и виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10 3 , то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне .

На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние для элементов фазовые переменные, а фигурируют только фазовые переменные, относящиеся к взаимным связям, элементов, то укрупнение элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем на макроуровне.

В ряде предметных областей удается использовать специфические особенности функционирования объектов для упрощения ММ. Примером являются электронные устройства цифровой автоматики, в которых возможно применять дискретное представление таких фазовых переменных, как напряжения и токи. В результате ММ становится системой логических уравнений, описывающих процессы преобразования сигналов. Такие логические модели существенно более экономичны, чем модели электрические, описывающие изменения напряжений и сил токов как непрерывных функций времени. Важный класс ММ на метауровне составляют модели массового обслуживания , применяемые для описания процессов функционирования информационных и вычислительных систем, производственных участков, линий и цехов.

Структурные модели также делятся на модели различных иерархических уровней. При этом на низших иерархических уровнях преобладает использование геометрических моделей, на высших иерархических уровнях используются топологические модели.

По степени детализации описания в пределах каждого иерархического уровня выделяют полные ММ и макромодели .

Полная ММ - модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлементных связей (т. е. состояния всех элементов проектируемого объекта), описывающая не только процессы на внешних выводах моделируемого объекта, но и внутренние процессы объекта.

Макромодель - ММ, в которой отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупненном выделении элементов.

Примечание. Понятия «полная ММ» и «макромодель» относительны и обычно используются для различения двух моделей, отображающих различную степень детальности описания свойств объекта.

По способу представления свойств объекта функциональные ММ делятся на аналитические и алгоритмические .

Аналитические ММ представляют собой явные выражения выходных параметров как функций входных и внутренних параметров. Такие ММ характеризуются высокой экономичностью, но получение явного выражения удается лишь в отдельных частных случаях, как правило, при принятии существенных допущений и ограничений, снижающих точность и сужающих область адекватности модели.

Алгоритмические ММ выражают связи выходных параметров с параметрами внутренними и внешними в форме алгоритма.

Имитационная ММ - алгоритмическая модель, отражающая поведение исследуемого объекта во времени при задании внешних воздействий на объект. Примерами имитационных ММ могут служить модели динамических объектов в виде систем ОДУ и модели систем массового обслуживания, заданные в алгоритмической форме.

Обычно в имитационных моделях фигурируют фазовые переменные. Так, на макроуровне имитационные модели представляют собой системы алгебро-дифференциальных уравнений:

где V - вектор фазовых переменных; t - время; V o - вектор начальных условий. К примерам фазовых переменных можно отнести токи и напряжения в электрических системах, силы и скорости - в механических, давления и расходы - в гидравлических.

Выходные параметры систем могут быть двух типов. Во-первых, это параметры-функционалы, т. е. функционалы зависимостей V(t ) в случае использования (1). Примеры таких параметров: амплитуды сигналов, временные задержки, мощности рассеивания и т. п. Во-вторых, это параметры, характеризующие способность проектируемого объекта работать при определенных внешних условиях. Эти выходные параметры являются граничными значениями диапазонов внешних переменных, в которых сохраняется работоспособность объекта.

При проектировании технических объектов можно выделить две основные группы процедур: анализ и синтез. Для синтеза характерно использование структурных моделей, для анализа - использование функциональных моделей. К математическому обеспечению анализа относятся математические модели, численные методы, алгоритмы выполнения проектных процедур. Компоненты МО определяются базовым математическим аппаратом, специфичным для каждого из иерархических уровней проектирования.

В САПР анализ выполняется математическим моделированием.

Математическое моделирование - процесс создания модели и оперирование ею с целью получения сведений о реальном объекте.

Моделирование большинства технических объектов можно выполнять на микро-, макро и метауровнях, различающихся степенью детализации рассмотрения процессов в объекте.

микроуровне , называемого распределенным , является система дифференциальных уравнений в частных производных (ДУПЧ), описывающая процессы в сплошной среде с заданными краевыми условиями. Независимыми переменными являются пространственные координаты и время. К моделям на микроуровне относятся многие сравнения математической физики. Объектами исследования являются поля физических величин, что требуется при анализе прочности строительных сооружений или машиностроительных деталей, исследовании процессов в жидких средах, моделировании концентраций и потоков частиц в электронных приборах и т. п. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрических потенциалов, давлений, температур и т.д. Возможности применения ММ в виде ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.

Система дифференциальных уравнений, как правило, известна (уравнения Ламе для механики упругих сред; уравнения Навье-Стокса для гидравлики; уравнения теплопроводности для термодинамики и т.д.), но точное решение ее удается получить лишь для частных случаев, поэтому первая задача, возникающая при моделировании, состоит в построении приближенной дискретной модели. Для этого используются методы конечных разностей и интегральных граничных уравнений, одним из вариантов последнего является метод граничных элементов.

Число совместно исследуемых различных сред (число деталей, слоев материала, фаз агрегатного состояния) в практически используемых моделях микроуровня не может быть большим ввиду сложностей вычислительного характера. Резко снизить вычислительные затраты в многокомпонентных средах можно, только применив иной подход к моделированию, основанный на принятии определенных допущений.

Допущение, выражаемое дискретизацией пространства, позволяет перейти к моделям макроуровня, называемым с осредоточенными . Математической моделью технического объекта на макроуровне является система алгебраических и обыкновенных дифференциальных уравнений (ОДУ) с заданными начальными условиями.

В этих уравнениях независимой переменной является время t , а вектор зависимых переменных V составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости механических систем, напряжения и силы тока электрических систем, давления и расходы гидравлических и пневматических систем и т.п.

В основе ММ лежат компонентные уравнения отдельных элементов и топологические уравнения, вид которых определяется связями между элементами. Предпосылкой создания единого математического и программного обеспечения анализа на макроуровне являются аналогии компонентных и топологических уравнений физически однородных подсистем, из которых состоит технический объект. Для получения топологических уравнений используются формальные методы.

Основными методами получения ММ объектов на макроуровне являются:

    Обобщенный метод,

    Табличный метод,

    Узловой метод,

    Метод переменных состояний.

Методы отличаются друг от друга видом и размерностью получаемой системы уравнений, способом дискретизации компонентных уравнений реактивных ветвей, допустимыми типами зависимых ветвей. Упрощение описания отдельных компонентов (деталей) позволяет исследовать модели процессов в устройствах, приборах, механических узлах, число компонентов в которых может доходить до нескольких тысяч. Для сложных технических объектов размерность ММ становится чрезмерно высокой, и для моделирования приходится переходить на метауровень.

На метауровне моделируют в основном две категории технических объектов: объекты, являющиеся предметом исследований теории автоматического управления, и объекты, являющиеся предметом теории массового обслуживания. Для первой категории объектов возможно использование математического аппарата макроуровня, для второй категории объектов используют методы событийного моделирования.

Когда число компонентов в исследуемой системе превышает некоторый порог, сложность модели системы на макроуровне вновь становится чрезмерной. Принимая соответствующие допущения, переходят на функционально-логический уровень, где используется аппарат передаточных функций для исследования аналоговых (непрерывных) процессов или аппарат математической логики и конечных автоматов, если объектом исследования является дискретный процесс.

Для исследования еще более сложных объектов (производственные предприятия и их объединения, вычислительные системы и сети, социальные системы и др.) применяют аппарат теории массового обслуживания, возможно использование и некоторых других подходов, например сетей Петри. Эти модели относятся к системному уровню моделирования.

По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.» (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.» (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.»

Наконец, наиболее лаконичное определение математической модели: "Уравнение , выражающее идею . "

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биология , экономика , социология , психология , и большинство других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.»

Если модель первого типа построена, то это означает что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − k x ) после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от x по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификация эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s , причем такое поведение структурно устойчиво.

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. . - 2-е изд., испр.. - М.: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Wiktionary: mathematical model
  7. CliffsNotes
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  13. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4, с. 35.
  14. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2, с. 93.
  15. Блехман И. И., Мышкис А. Д., Пановко Н. Г. , Прикладная математика: Предмет, логика, особенности подходов. С примерами из механики: Учебное пособие. - 3-е изд., испр. и доп. - М.: УРСС, 2006. - 376 с. ISBN 5-484-00163-3, Глава 2.