Графическое решение уравнений и неравенств конспект. «Графические методы решения уравнений и неравенств с параметрами


Один из самых удобных методов решения квадратных неравенств – это графический метод. В этой статье мы разберем, как решаются квадратные неравенства графическим способом. Сначала обсудим, в чем суть этого способа. А дальше приведем алгоритм и рассмотрим примеры решения квадратных неравенств графическим способом.

Навигация по странице.

Суть графического способа

Вообще графический способ решения неравенств с одной переменной применяется не только для решения квадратных неравенств, но и неравенств других видов. Суть графического способа решения неравенств следующая: рассматривают функции y=f(x) и y=g(x) , которые соответствуют левой и правой частям неравенства, строят их графики в одной прямоугольной системе координат и выясняют, на каких промежутках график одной из них располагается ниже или выше другого. Те промежутки, на которых

  • график функции f выше графика функции g являются решениями неравенства f(x)>g(x) ;
  • график функции f не ниже графика функции g являются решениями неравенства f(x)≥g(x) ;
  • график функции f ниже графика функции g являются решениями неравенства f(x)
  • график функции f не выше графика функции g являются решениями неравенства f(x)≤g(x) .

Также скажем, что абсциссы точек пересечения графиков функций f и g являются решениями уравнения f(x)=g(x) .

Перенесем эти результаты на наш случай – для решения квадратного неравенства a·x 2 +b·x+c<0 (≤, >, ≥).

Вводим две функции: первая y=a·x 2 +b·x+c (при этом f(x)=a·x 2 +b·x+c) отвечает левой части квадратного неравенства, вторая y=0 (при этом g(x)=0 ) отвечает правой части неравенства. Графиком квадратичной функции f является парабола, а графиком постоянной функции g – прямая, совпадающая с осью абсцисс Ox .

Дальше согласно графическому способу решения неравенств надо проанализировать, на каких промежутках график одной функции расположен выше или ниже другого, что позволит записать искомое решение квадратного неравенства. В нашем случае нужно проанализировать положение параболы относительно оси Ox .

В зависимости от значений коэффициентов a , b и c возможны следующие шесть вариантов (для наших нужд достаточно схематического изображения, и можно не изображать ось Oy , так как ее положение не влияет на решения неравенства):

    На этом чертеже мы видим параболу, ветви которой направлены вверх, и которая пересекает ось Ox в двух точках, абсциссы которых есть x 1 и x 2 . Этот чертеж отвечает варианту, когда коэффициент a – положительный (он отвечает за направленность вверх ветвей параболы), и когда положительно значение дискриминанта квадратного трехчлена a·x 2 +b·x+c (при этом трехчлен имеет два корня, которые мы обозначили как x 1 и x 2 , причем приняли, что x 1 0 , D=b 2 −4·a·c=(−1) 2 −4·1·(−6)=25>0 , x 1 =−2 , x 2 =3 .

    Давайте для наглядности изобразим красным цветом части параболы, расположенные выше оси абсцисс, а синим цветом – расположенные ниже оси абсцисс.

    Теперь выясним, какие промежутки этим частям соответствуют. Определить их поможет следующий чертеж (в дальнейшем подобные выделения в форме прямоугольников будем проводить мысленно):

    Так на оси абсцисс оказались подсвечены красным цветом два промежутка (−∞, x 1) и (x 2 , +∞) , на них парабола выше оси Ox , они составляют решение квадратного неравенства a·x 2 +b·x+c>0 , а синим цветом подсвечен промежуток (x 1 , x 2) , на нем парабола ниже оси Ox , он представляет собой решение неравенства a·x 2 +b·x+c<0 . Решениями нестрогих квадратных неравенств a·x 2 +b·x+c≥0 и a·x 2 +b·x+c≤0 будут те же промежутки, но в них следует включить числа x 1 и x 2 , отвечающие равенству a·x 2 +b·x+c=0 .

    А теперь кратко: при a>0 и D=b 2 −4·a·c>0 (или D"=D/4>0 при четном коэффициенте b )

    • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 1)∪(x 2 , +∞) или в другой записи xx 2 ;
    • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, x 1 ]∪ или в другой записи x 1 ≤x≤x 2 ,

    где x 1 и x 2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x 1


    Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x 0 . Представленному случаю отвечает a>0 (ветви направлены вверх) и D=0 (квадратный трехчлен имеет один корень x 0 ). Для примера можно взять квадратичную функцию y=x 2 −4·x+4 , здесь a=1>0 , D=(−4) 2 −4·1·4=0 и x 0 =2 .

    По чертежу отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x 0) , (x 0 , ∞) . Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

    Делаем выводы: при a>0 и D=0

    • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 0)∪(x 0 , +∞) или в другой записи x≠x 0 ;
    • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, +∞) или в другой записи x∈R ;
    • квадратное неравенство a·x 2 +b·x+c<0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси Ox );
    • квадратное неравенство a·x 2 +b·x+c≤0 имеет единственное решение x=x 0 (его дает точка касания),

    где x 0 - корень квадратного трехчлена a·x 2 +b·x+c .


    В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия a>0 (ветви направлены вверх) и D<0 (квадратный трехчлен не имеет действительных корней). Для примера можно построить график функции y=2·x 2 +1 , здесь a=2>0 , D=0 2 −4·2·1=−8<0 .

    Очевидно, парабола расположена выше оси Ox на всем ее протяжении (нет интервалов, на которых она ниже оси Ox , нет точки касания).

    Таким образом, при a>0 и D<0 решением квадратных неравенств a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 является множество всех действительных чисел, а неравенства a·x 2 +b·x+c<0 и a·x 2 +b·x+c≤0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox . В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x 2 . Но все же не помешает получить представление и об этих случаях. Рассуждения здесь аналогичные, поэтому запишем лишь главные результаты.

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом :

    На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y=a·x 2 +b·x+c . Для построения эскиза параболы достаточно выяснить два момента:

    • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a<0 – вниз).
    • А во-вторых, по значению дискриминанта квадратного трехчлена a·x 2 +b·x+c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D>0 ), касается ее в одной точке (при D=0 ), или не имеет общих точек с осью Ox (при D<0 ). Для удобства на чертеже указываются координаты точек пересечения или координата точки касания (при наличии этих точек), а сами точки изображаются выколотыми при решении строгих неравенств, или обычными при решении нестрогих неравенств.
  • Когда чертеж готов, по нему на втором шаге алгоритма

    • при решении квадратного неравенства a·x 2 +b·x+c>0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
    • при решении неравенства a·x 2 +b·x+c≥0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
    • при решении неравенства a·x 2 +b·x+c<0 находятся промежутки, на которых парабола ниже оси Ox ;
    • наконец, при решении квадратного неравенства вида a·x 2 +b·x+c≤0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);

    они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Остается лишь решить несколько квадратных неравенств с использованием этого алгоритма.

Примеры с решениями

Пример.

Решите неравенство .

Решение.

Нам требуется решить квадратное неравенство, воспользуемся алгоритмом из предыдущего пункта. На первом шаге нам нужно изобразить эскиз графика квадратичной функции . Коэффициент при x 2 равен 2 , он положителен, следовательно, ветви параболы направлены вверх. Выясним еще, имеет ли парабола с осью абсцисс общие точки, для этого вычислим дискриминант квадратного трехчлена . Имеем . Дискриминант оказался больше нуля, следовательно, трехчлен имеет два действительных корня: и , то есть, x 1 =−3 и x 2 =1/3 .

Отсюда понятно, что парабола пересекает ось Ox в двух точках с абсциссами −3 и 1/3 . Эти точки изобразим на чертеже обычными точками, так как решаем нестрогое неравенство. По выясненным данным получаем следующий чертеж (он подходит под первый шаблон из первого пункта статьи):

Переходим ко второму шагу алгоритма. Так как мы решаем нестрогое квадратное неравенство со знаком ≤, то нам нужно определить промежутки, на которых парабола расположена ниже оси абсцисс и добавить к ним абсциссы точек пересечения.

Из чертежа видно, что парабола ниже оси абсцисс на интервале (−3, 1/3) и к нему добавляем абсциссы точек пересечения, то есть, числа −3 и 1/3 . В результате приходим к числовому отрезку [−3, 1/3] . Это и есть искомое решение. Его можно записать в виде двойного неравенства −3≤x≤1/3 .

Ответ:

[−3, 1/3] или −3≤x≤1/3 .

Пример.

Найдите решение квадратного неравенства −x 2 +16·x−63<0 .

Решение.

По обыкновению начинаем с чертежа. Числовой коэффициент при квадрате переменной отрицательный, −1 , поэтому, ветви параболы направлены вниз. Вычислим дискриминант, а лучше – его четвертую часть: D"=8 2 −(−1)·(−63)=64−63=1 . Его значение положительно, вычислим корни квадратного трехчлена: и , x 1 =7 и x 2 =9 . Так парабола пересекает ось Ox в двух точках с абсциссами 7 и 9 (исходное неравенство строгое, поэтому эти точки будем изображать с пустым центром).Теперь можно сделать схематический рисунок:

Так как мы решаем строгое квадратное неравенство со знаком <, то нас интересуют промежутки, на которых парабола расположена ниже оси абсцисс:

По чертежу видно, что решениями исходного квадратного неравенства являются два промежутка (−∞, 7) , (9, +∞) .

Ответ:

(−∞, 7)∪(9, +∞) или в другой записи x<7 , x>9 .

При решении квадратных неравенств, когда дискриминант квадратного трехчлена в его левой части равен нулю, нужно быть внимательным с включением или исключением из ответа абсциссы точки касания. Это зависит от знака неравенства: если неравенство строгое, то она не является решением неравенства, а если нестрогое – то является.

Пример.

Имеет ли квадратное неравенство 10·x 2 −14·x+4,9≤0 хотя бы одно решение?

Решение.

Построим график функции y=10·x 2 −14·x+4,9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0,7 , так как D"=(−7) 2 −10·4,9=0 , откуда или 0,7 в виде десятичной дроби. Схематически это выглядит так:

Так как мы решаем квадратное неравенство со знаком ≤, то его решением будут промежутки, на которых парабола ниже оси Ox , а также абсцисса точки касания. Из чертежа видно, что нет ни одного промежутка, где бы парабола была ниже оси Ox , поэтому его решением будет лишь абсцисса точки касания, то есть, 0,7 .

Ответ:

данное неравенство имеет единственное решение 0,7 .

Пример.

Решите квадратное неравенство –x 2 +8·x−16<0 .

Решение.

Действуем по алгоритму решения квадратных неравенств и начинаем с построения графика. Ветви параболы направлены вниз, так как коэффициент при x 2 отрицательный, −1 . Найдем дискриминант квадратного трехчлена –x 2 +8·x−16 , имеем D’=4 2 −(−1)·(−16)=16−16=0 и дальше x 0 =−4/(−1) , x 0 =4 . Итак, парабола касается оси Ox в точке с абсциссой 4 . Выполним чертеж:

Смотрим на знак исходного неравенства, он есть <. Согласно алгоритму, решение неравенства в этом случае составляют все промежутки, на которых парабола расположена строго ниже оси абсцисс.

В нашем случае это открытые лучи (−∞, 4) , (4, +∞) . Отдельно заметим, что 4 - абсцисса точки касания - не является решением, так как в точке касания парабола не ниже оси Ox.

Ответ:

(−∞, 4)∪(4, +∞) или в другой записи x≠4 .

Обратите особое внимание на случаи, когда дискриминант квадратного трехчлена, находящегося в левой части квадратного неравенства, меньше нуля. Здесь не нужно спешить и говорить, что неравенство решений не имеет (мы же привыкли делать такой вывод для квадратных уравнений с отрицательным дискриминантом). Дело в том, что квадратное неравенство при D<0 может иметь решение, которым является множество всех действительных чисел.

Пример.

Найдите решение квадратного неравенства 3·x 2 +1>0 .

Решение.

Как обычно начинаем с чертежа. Коэффициент a равен 3 , он положителен, следовательно, ветви параболы направлены вверх. Вычисляем дискриминант: D=0 2 −4·3·1=−12 . Так как дискриминант отрицателен, то парабола не имеет с осью Ox общих точек. Полученных сведений достаточно для схематичного графика:

Мы решаем строгое квадратное неравенство со знаком >. Его решением будут все промежутки, на которых парабола находится выше оси Ox . В нашем случае парабола выше оси абсцисс на всем ее протяжении, поэтому искомым решением будет множество всех действительных чисел.

Ox , а также к ним нужно добавить абсциссы точек пересечения или абсциссу точки касания. Но по чертежу хорошо видно, что таких промежутков нет (так как парабола всюду ниже оси абсцисс), как нет и точек пересечения, как нет и точки касания. Следовательно, исходное квадратное неравенство не имеет решений.

Ответ:

нет решений или в другой записи ∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

Л.А.Кустова

учитель математики

г.Воронеж, МБОУ лицей №5

Проект

«Преимущества графического способа решения уравнений и неравенств».

Класс:

7-11

Предмет:

Математика

Задача исследования:

Выяснить преимущества графического способа решения уравнений и неравенств .

Гипотеза:

Некоторые уравнения и неравенства проще и эстетичнее решать графическим способом.

Этапы исследования:

    Сравнить аналитический и графический способ решения уравнений и неравенств .

    Ознакомиться в каких случаях графический способ имеет преимущества.

    Рассмотреть решение уравнений с модулем и параметром.

Результаты исследования:

1.Красота математики это философская проблема.

2.При решении некоторых уравнений и неравенств графический способ решения наиболее практичен и привлекателен .

3. Применить привлекательность математики в школе можно с помощью графического способа решения уравнений и неравенств.

«Науки математические с самой глубокой древности обращали на себя особенное внимание,

в настоящее время они получили еще больше интереса по влиянию своему на искусство и промышленность».

Пафнутий Львович Чебышев.

Начиная с 7 класса рассматриваются различные способы решения уравнений и неравенств, в том числе графический. Кто считает, что математика сухая наука,думаю, меняют свое мнения когда видят как красиво можно решить некоторые виды уравнений и неравенств. Приведу несколько примеров:

1).Решить уравнение: = .

Можно решать аналитически, то есть, возводить обе части уравнения в третью степень и так далее.

Графический способ удобен для данного уравнения, если требуется просто указать количество решений.

Подобные задания часто встречаются при решении блока «геометрия» ОГЭ 9 класса.

2).Решить уравнение с параметром:

││ x │- 4│= a

Не самый сложный пример, но если решать аналитически,придется дважды раскрывать скобки модуля, и для каждого случая рассматривать возможные значения параметра. Графически все очень просто. Рисуем графики функций и видим, что:

Источники:

Компьютерная программа Advanced Grapher .

Пусть f(x,y) и g(x, y) - два выражения с переменными х и у и областью определения Х . Тогда неравенства вида f(x, y) > g(x, y) или f(x, y) < g(x, y) называется неравенством с двумя переменными .


Значение переменных х, у из множества Х , при которых неравенство обращается в истинное числовое неравенство, называется его решением и обозначается (x, y) . Решить неравенство - это значит найти множество таких пар.


Если каждой паре чисел (x, y) из множества решений неравенства поставить в соответствие точку М(x, y) , получим множество точек на плоскости, задаваемое этим неравенством. Его называют графиком данного неравенства . График неравенства обычно является областью на плоскости.


Чтобы изобразить множество решений неравенства f(x, y) > g(x, y) , поступают следующим образом. Сначала заменяют знак неравенства знаком равенства и находят линию, имеющую уравнение f(x,y) = g(x,y) . Эта линия делит плоскость на несколько частей. После этого достаточно взять в каждой части по одной точке и проверить, выполняется ли в этой точке неравенство f(x, y) > g(x, y) . Если оно выполняется в этой точке, то оно будет выполняться и во всей части, где лежит эта точка. Объединяя такие части, получаем множество решений.


Задача. y > x .


Решение. Сначала заменим знак неравенства знаком равенства и построим в прямоугольной системе координат линию, имеющую уравнение y = x .


Эта линия делит плоскость на две части. После этого возьмем в каждой части по одной точке и проверим, выполняется ли в этой точке неравенство y > x .


Задача. Решить графически неравенство
х 2 + у 2 £ 25.
















Рис. 18.



Решение. Сначала заменим знак неравенства знаком равенства и проведем линию х 2 + у 2 = 25. Это окружность с центром в начале координат и радиусом 5. Полученная окружность делит плоскость на две части. Проверяя выполнимость неравенства х 2 + у 2 £ 25 в каждой части, получаем, что графиком является множество точек окружности и части плоскости внутри окружности.

Пусть даны два неравенства f 1(x, y) > g 1(x, y) и f 2(x, y) > g 2(x, y) .

Системы совокупностей неравенств с двумя переменными

Система неравенств представляет собой конъюнкцию этих неравенств. Решением системы является всякое значение (x, y) , которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Совокупность неравенств представляет собой дизъюнкцию этих неравенств. Решением совокупности является всякое значение (x, y) , которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Задача. Решить графически систему неравенств


Решение. у = х и х 2 + у 2 = 25. Решаем каждое неравенство системы.


Графиком системы будет множество точек плоскости, являющихся пересечением (двойная штриховка) множеств решений первого и второго неравенств.


Задача. Решить графически совокупность неравенств



















Решение. Сначала заменяем знак неравенства знаком равенства и проводим в одной системе координат линии у = х + 4 и х 2 + у 2 = 16. Решаем каждое неравенство совокупности. Графиком совокупности будет множество точек плоскости, являющихся объединением множеств решений первого и второго неравенств.

Упражнения для самостоятельной работы


1. Решите графически неравенства: а) у > 2x ; б) у < 2x + 3;


в) x 2 + y 2 > 9; г) x 2 + y 2 £ 4.


2. Решите графически системы неравенств:


а) в)

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

    Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      На координатной плоскости постройте график линейного уравнения. Для этого преобразуйте неравенство в уравнение и постройте график, как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

      Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2,у = – x 2, в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3, у = x 4,у = x 2n, у = x - 2n, у = 3√x , (x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k ¹ 0. График этой функции называется гиперболой.

Функция (x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 (a x ) = x 2 (a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

/>Уравнение(x 2 + y 2 ) 2 = a (x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2 ) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4, у = 1/ x 2.

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f (x ) , можно построить графики функций у = f (x + m ) ,у = f (x )+ l и у = f (x + m )+ l . Все эти графики получаются из графика функции у = f (x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х0; у0): х =- b /2 a ;

y0=ахо2+вх0+с;

Находим ось симметрии параболы (прямая х=х0);

PAGE_BREAK--

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = (x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3, у = x 4,у = 3√x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.