Ошибки в проектах водяного пожаротушения. Расчет спринклерных и дренчерных установок Программа расчета спринклерной системы пожаротушения

1. Расчет спринклерной установки

Порядок расчета спринклерных и дренчерных установок следую­щий:

1. Определяется группа помещений по степени опасности развития пожара, к кото­рой относится проектируемое помещение, производство или техно­логический процесс.

Для пожарной нагрузки 350 МДж·м -2 принимаем 2-ю группу помещений.

2. Определяются требуемые параметры водяной или пенной ус­тановки пожаротушения.

Для 2-й группы помещения и огнегасительного вещества имеем:

Интенсивность орошения Ј р , не менее 0,12 л/с·м 2 ;

Площади, защищаемая одним спринкерным гасителем, F р ; 12 м 2 ;

Продолжительность работы установки, 60 мин;

Расстояние между гасителями, L с , 4 м.

3. Определяется требуемая производительность оросителя по формуле:

,

л/с

4. Определяется требуемый коэффициент производительности оросителя, по формуле:

,

где h - свободный напор перед оросителем, принимается равным 5 м.

5. По расчетному значению требуемого коэффициента производительности принимается диаметр выходного отверстия оросителя из условия К > Кр . Принимаем К=0,71 , тогда диаметр выходного отверстия будет равен 15 мм.

6. Уточняется напор перед оросителем (генератором) по формуле:

,

м.

7. Определяется количество оросителей по формуле:

где m - количество рядов;

n - количество оросителей в ряду.

где а и в - длина и ширина защищаемого помещения от пожара, а = 42 м; в = 14 м.

,

Определяется количество оросителей, участвующих в локализации и тушении пожара:

9.Составляется расчетная схема водяной установки пожаротушения.

При разработке схемы трассировки распределительных трубопроводов необходимо стремиться к выбору такой схему, при которой обеспечивалась бы подача воды с наименьшими потерями напора в сети при возможно меньшем диаметре труб.

Принимается следующий вариант:

10. Производится гидравлический расчет водяной установка.

Гидравлический расчет заключается в определении параметров основного водопитания в зависимости от высоты подъема распределительных трубопроводов с оросителями, свободного напора у "диктующего" оросителя и потерь напора в сети на участке между водопитателем и "диктующим" оросителем.

Рис. 1 Расчетная схема спринклерной установки.

Гидравлические расчеты в сети сведём в таблицу 1.

Таблица 1 Гидравлический расчёт спринклерной установки

Участков

l i м

Диаметр условного прохода

d i мм

Потери напора на уч - ке

Напор в расч. точках

L j м

Расход воды в расч. точках

q j л/с

Расход воды на уч –х

q i л/с

Подбираем параметры основных водопитателей для установки водяного пожаротушения, защищающей склад хранения древесины (Р=180 кг/м 3).

Интенсивность орошения водой I=0,4 л/(м 2 . с) по таблице 5.2 для 6 группы помещений по степени опасности развития пожара.

Площадь орошения спринклерным оросителем F op =12 м 2 . Трассировка трубопроводов и места размещение оросителей на плане показаны на листе 1 графической части.

Выбираем тип оросителя и его основные параметры. Для этого определимтребуемые напор и расход на диктующем оросителе.

На основании полученных расчетов применяем в проектируемой установке спринклерный ороситель СВН-15.

Уточняем расход из оросителя:

С определенным коэффициентом запаса принимаем л/с (хотя эта процедура никаким нормативным документом не прописана, а следовательно расход можно и не увеличивать).

Таким образом, получаем начальные гидравлические параметры у диктующего оросителя:

Для левой ветви распределительного трубопровода принимаем следующие параметры трубопроводов:

участок 1-2: мм;

участок 2-3: мм;

участок 3-4: мм;

участок 4-а: мм.

При проектировании распределительных, питающих и подводящих сетей необходимо исходить из тех соображений, что водяные и пенные АУП эксплуатируются, как правило, довольно длительное время без замены трубопроводов. Поэтому, если ориентироваться на удельное гидравлическое сопротивление новых труб, через определенное время их шероховатость увеличивается, вследствие чего распределительная сеть уже не будет соответствовать расчетным параметрам по расходу и давлению. В связи с этим принимается средняя шероховатость труб. Значение удельного сопротивления А принимается по таблице V.1. настоящего пособия.

Расход первого оросителя 1 является расчетным значением на участке между первым и вторым оросителями.

Таким образом, падение давления на участке составит:

Давление у оросителя 2:

Расход оросителя 2:

Расчетный расход на участке между первым и вторым оросителями, т.е. на участке составит:

Давление оросителя 3:

Расход оросителя 3:

Расчетный расход на участке между первым и третьим оросителями, т.е. на участке, составит:

По расходу воды определяются потери давления на участке:

Потери давления на участке водопровода при мм очень высокие, поэтому на участке принимаем диаметр трубопровода мм. Тогда:

Давление оросителя 4:

Расход оросителя 4:

Таким образом, даже незначительное изменение спецификации распределительного и питающего трубопроводов в сторону уменьшения диаметра приводит к достаточно существенному изменению давления, что требует использования пожарного насоса с большим давлением подачи.

Расчетный расход на участке между первым и четвертым оросителями, т.е. на участке, составит:

По расходу воды определяются потери давления на участке (м) :

Давление в точке а:

Участок принимаем аналогичным участку, т.е. диаметры и длина трубопроводов будут равны:

участок а-5: мм; м;

участок 5-6: мм; м;

участок 6-7: мм; м.

В рядке I правая ветвь несимметрична левой ветви. Удельное гидравлическое сопротивление (или удельная гидравлическая характеристика) правой ветви распределительного трубопровода зависит от диаметров участка трубопровода между оросителями 7-6, 6-5 и между оросителем 5 и т. а (5-а).

Давление правой ветви рядка I с оросителями 5-7 в т. а должно быть равно давлению левой ветви рядка I с оросителями 1-4, т.е. МПа.

Расход в правой ветви рядка I при давлении 0,272 МПа составит:

где В а-7 - гидравлическая характеристика правой ветви рядка I.

При условии симметричности левой и правой ветвей рядка I (по три оросителя в каждой ветви) расход должен быть аналогичным расходу, т.е. =7,746 л/с.

Давление оросителя 5 аналогично давлению у оросителя 3, т.е. МПа.

Тогда давление в т. а для правой ветки рядка I составит:

Гидравлическая характеристика правой ветви рядка I:

Таким образом, расчетный расход правой ветки рядка I составит:

Общий расход рядка I:

т.е. истинный максимальный расход АУП будет составлять не 10, а 29,2 л/с.

Принимается диаметр питающего трубопровода на участке мм.

По расходу определяются потери давления на участке:

Поскольку потери давления на участке достаточно велики, то принимаем диаметр питающего трубопровода мм.

Тогда потери давления на участке составят:

Давление в т. b составит:

Общий расход двух рядков:

Расчет всех следующих рядков, если они выполнены конструктивно одинаково, проводится по аналогичному алгоритму.

Так как гидравлические характеристики рядков, выполненных конструктивно одинаково, равны, характеристика рядка II определяется по обобщенной характеристике расчетного участка трубопровода рядка I:

Расход воды из рядка II определяется по формуле:

Относительный коэффициент расходов II и I рядков:

По расходу определяются потери давления на участке:

Давление в т. с составит:

Так как гидравлические характеристики рядков, выполненных конструктивно одинаково, равны, характеристика рядка III определяется по обобщенной характеристике расчетного участка трубопровода рядка II:

Расход воды из рядка III определяется по формуле:

Общий расход трех рядков:

По ранее действующим НПБ 88 расход спринклерной АУП определяется как произведение нормативной интенсивности орошения на площадь для расчета расхода воды, т.е. расход должен быть равен:

Если для спринклерной АУП условно площадь для расчета расхода принять 160 м 2 , то её общий расход из трех рядков составит не л/с, а 93,2 л/с.

Требуемое давление (напор), которое должна обеспечить насосная установка, определяется по формуле

P=P O +P T +P M +P УУ +P H +P Z +P ВХ

Требуется подобрать насос для спринклерной установки со следующими параметрами гидравлической сети:

общий расход АУП составляет 36 м 3 /ч

давление у диктующего оросителя P O =0,075 МПа

линейные потери давления в подводящем и питающем трубопроводе P T =0,942 МПа

местные потери давления в трубопроводе P M =0,001 МПа

потери давления в спринклерном узле управления P УУ =0,19 МПа

потери давления в насосной установке P H =0,6 МПа

давление эквивалентное геометрической высоте диктующего оросителя P Z =0,0036 МПа

давление внешней магистральной сети P ВХ =0,642 МПа

Р=0,075+0,942+0,001+0,19+0,6+0,0036-0,642=1,17 МПа

По расходу Q=93,2 л/с и давлению Р=1,17 МПа из каталога выбираем два насоса марки ТП(Д) 200 - 660 (с числом оборотов 2900 об/мин), один основной, второй резервный.

Цель гидравлического расчета — определение расхода воды на пожаротушение, диаметров распределительных, питающих и подводящих трубопроводов и необходимого требуемого давления и расхода для насосной установки.

Гидравлический расчет выполнен по техническим данным представленным в (Гидравлическая схема расчета параметров)

Параметры установки пожаротушения торгового центра и других помещениях в подтрибунных пространствах принято в соответствии с требованиями СТУ:

— помещения объекта относятся к I группе помещений;

— интенсивность орошения — 0,12 л/(с·м 2);

— минимальная площадь для расчета расхода воды — 120 м 2 ;

— продолжительность подачи воды — 60 мин;

— максимальная площадь, защищаемая одним оросителем — 12 м 2 ;

— расход воды на внутреннее пожаротушение здания от пожарных кранов составляет 2 струи с расходом каждой не менее 5 л/с.

Рабочей документацией предусмотрена защита от пожара автоматической установкой водяного пожаротушения со спринклерными оросителями RA1325 Reliable с коэффициентом производительности 0,42.

На магистральной сети трубопровода предусмотрен монтаж пожарных кранов на питающих и распределительных трубопроводах диаметром DN 65. Расстановка пожарных кранов выполнена с учетом орошения каждой точки защищаемых помещений двумя струями с высотой компактной струи не менее 12 м для помещений здания. При этом расход от одного пожарного крана составляет не менее 5,2 л/с, а требуемый напор у пожарного крана — не менее 19,9 м. вод. ст. (согласно табл. 3 СП10.13130.2009).

Трубопроводы установки пожаротушения выполнены из электросварных и водогазопроводных труб по ГОСТ 10704-91 и ГОСТ 3262-75 различного диаметра.

Источником холодного водоснабжения проектируемого объекта является проектируемый водовод. Напор в существующей сети водопровода равен 2,6 атм. (26,0 м).

Расчетная площадь для определения параметров насосной станции пожаротушения принята на отм.+21,600 (6 этаж), расположение распределительного трубопровода на отм.+28,300 (под перекрытием) с монтажным положением оросителей вертикально вверх. Участок принят для расчета по причине того, что является наиболее удаленным, тупиковым и высоко поднятым по отношению к другим участкам данной секции.

Внутренний противопожарный водопровод выполнен совмещенным со спринклерным водяным пожаротушением, общая насосная группа.

Для определения параметров насосной станции пожаротушения принято расположение основания для пожарных насосов на отм.-0,150 (1 этаж).

Максимальное расстояние между спринклерами 2,7-3,0 м (в форме квадрата с учетом технических требований и эпюры орошения или прямоугольной формы с соблюдением охвата орошения). Диаметр окружности, защищаемая одним оросителем 4,0м, соответственно один ороситель защищает площадь 12,5 м2.

Свободный напор в наиболее удаленном и высокорасположенном оросителе должен быть не менее 12 м (0,12 МПа). Расход через диктующий ороситель
Qmin = k√ Н = 0,42√12 =1,455 л/с.

На защищаемой площади 120 м2 требуется не менее 16 (120/(2,76*2,76)) оросителей, минимальная интенсивность орошения 0,12 л/(с·м 2), тогда расход воды каждого оросителя должен составить: л/с, где м 2 — площадь орошения, — число оросителей, л/(с·м 2) — нормативная интенсивность орошения.

Гидравлический расчет системы автоматического пожаротушение

Расчет производится для тупиковой не симметричной схемы.

Гидравлический расчет для подбора моноблочной насосной установки произведен в соответствии с Приложением В СП 5.13130.2009.

Основные показатели гидравлического расчета, представлены в таблице 1.

Таблица 1 Гидравлический расчет

№ участка Длина участка

L, м

Ду, мм Удельная харак-ка

тр-да, Кт

Коэф-нт производ. оросителя, k, л/с·м² Напор Н, м.вод.ст. РасходQ, л/с
Q=k √ Н
Потери участка, м.вод.ст. Hι=Q²*L/Кт Участок 1-тупик-й 2-кольц-й Скорость фактич. V, м/с
Рядок А ветвь а1-а2 (1 ороситель)
1а — диктующий ороситель 0,42 12,0 1,455
уч. а1-а2 5,0 25 3,65 0,42 1,455 2,900 1
Геометр. высота оросителя а1от а2 (с отм.+22,500 м на отм.+24,000м) -1.50
Требуемый напор и расход в т.а2 13,40 1,537
уч. а2-А 5,0 25 3,65 0,42 2,992 12,26 1
Геометр. высота оросителя а2 от магистрали (с отм.+24,000 м на отм.+28,300м) -4.30
Рядок Е ветвь е1-Е
1е — ороситель 0,42 12,0 1,455
уч. е1-е2 4,7 25 3,65 0,42 1,455 2.726 1
Геометр. высота оросителя е1от е2 (с отм.+22,500 м на отм.+24,000м) -1.50
Требуемый напор и расход в т.е2 13,226 1,530
уч. е2-Е 5,0 25 3,65 0,42 2,985 12,206 1
Геометр. высота оросителя е2 от магистрали (с отм.+24,000 м на отм.+28,300м) -4.30
Требуемый напор и расход в т.Е ’ 21,131

В е1-Е =Q е1-Е 2 /Р Е ’ =2,985 2 /21,131=0,422

расход на уч-ке е1-Е: Q е1-Е =(В е1-Е * Р Е) 0.5 =(0,422* 21,758) 0.5 3,030
Магистраль А-К
Требуемый напор и расход в т.А 21,36 1,941
Уч.А-Б 3,0 100 4231 0,42 4,933 0,017
Требуемый напор и расход в т.Б 21,377 1,942
Уч.Б-В 2,5 100 4231 0,42 6,875 0,028
Требуемый напор и расход в т.В 21,405 1,943
Уч.В-Г 1,1 100 4231 0,42 8,818 0,020
Требуемый напор в т.Г 21,425
Требуемый напор и расход на уч-ке Г1-Г 21,425
Гидравлическая характеристика

В г1-Г = Q г1-Г 2 /Р г =2,992 2 /21,36=0,419

расход на уч-ке Г1-Г: Q г1-Г =(В г1-Г * Р г) 0.5 =(0.419* 21,425) 0.5 2,996
Уч.Г-Д 1,4 100 4231 0,42 11,814 0,046
Требуемый напор и расход в т.Д 21,471 1,946
Уч.Д-Д1 2,5 100 4231 0,42 13,760 0,112
Требуемый напор и расход в т.Д1 21,583 1,951
Уч.Д1-Д2 2,5 100 4231 0,42 15,711 0,146
Требуемый напор и расход в т.Д2 21,729 1,958
Уч.Д2-Е 0,4 100 4231 0,42 17,669 0,029
Требуемый напор и расход в т.Е 21,758
Уч.Е-Ж 1,0 100 4231 0,42 20,699 0,101
Требуемый напор и расход в т.Ж 21,859
Уч.Ж-Ж1 0,9 125 13190 0,42 25,899 0,046
Требуемый напор и расход в т.Ж1 21,905
Уч.Ж1-Ж2 0,2 125 13190 0,42 31,099 0,015
Требуемый напор и расход в т.Ж2 21,92 1,966
Уч.Ж2-Ж3 2,5 125 13190 0,42 33,065 0,207
Требуемый напор и расход в т.Ж3 22,127 1,976
Уч.Ж3-И 2,0 125 13190 0,42 35,041 0,186
Требуемый напор и расход в т.И 23,313
Гидравлическая характеристика

В и1-и = Q и1-и 2 /Р и ’ =2,985 2 /21,131=0,422

расход на уч-ке и1-и: Q и1-и =(В и1-и * Р и) 0.5 =(0,422* 23,313) 0.5 3,136
Уч.И-К 127,10 125 13190 0,42 38,177 14,044
Т.К 37,357 38,177
Внутренний противопожарный водопровод (2х5,2 л/с)
ПК6(1)
уч.Ж-ПК6(1) 7,7 65 572 19,90 5,200 0,364 1
Разница высоты на уч. Ж-ПК6(1) составляет: -5.45
Расход и давление перед пожарным краном ПК6(1) составит (перед диафрагмой): 29,429
Расход перед ПК после установки шайбы: 5,200
ПК6(2)
уч.И-ПК6(2) 7,7 65 572 19,90 5,200 0,364 1
Разница высоты на уч. И-ПК6(2) составляет: -5,45
Расход и давление перед пожарным краном ПК6(2) составит: 29,477
Давление перед ПК не превышает 0,4МПа
На ПК устанавливается диафрагма (дроссельная шайба), диаметр отверстия шайбы 20,4 мм
Давление и расход перед ПК после установки шайбы: 5,2
Питающий трубопровод
т.К 37,357 38,177
уч. К-УУ 63,15 150 28690 38,177 3,208
УУ 40,565 38,177
Потери давления в УУ 0,00018 0,262
Потери общие составляют: 30,157
Местные сопротивления 20% 6,031
Геометр. высота дикт. оросителя относительно УУ с отм.1,45 на отм. 22.500 21,050
Результаты расчета до УУ
Требуемый напор секции (перед УУ) 67,908 м
Требуемый расход секции на 120 м 2 38,177 л/с 137,44 м 3 /ч
Всего оросителей 16 шт оросителей на площади
Защищаемая площадь 120 м 2
На 1 ороситель 7,500 м 2
Интенсивность орошения 0,318 л/(с · м 2) результат расчета
Подводящий трубопровод до УУ
т.УУ 67,908 38,177
уч. УУ-G 0,8 150 28690 38,177 0,0406
т.G 67,949 38,177
уч. G-H 11,45 200 209900 38,177 0,079
т.H 68,028 38,177
уч. H-F 0,97 100 4231 38,177 0,334 1 4,8
т.F 68,362 38,177
Геометр. высота оси насоса относительно УУ с отм.+0.27 на отм.+1.45 1,18
Потери в насосе 1,0
Местные сопротивления от насоса до УУ 20% 0,091 м
Давление в конце участка трубопровода (за насосом) 70,633 м
Всасывающий трубопровод
Давление перед врезкой всасыв. труб-да (Нвс) от ввода ВК 26 м
Рассматривается участок на пропуск расхода на один ввод, V не д/превышать 2,8 м/с до патрубков насосной установки
уч.»Ввод»-F 25,00 200 209900 38,177 0,173 1 1,2
т.F 25,827 38,177
уч. F-Z 0,57 100 4231 38,177 0,196 1 4,8
Местные сопротивления до насоса 20% 0,074
Давление на входе пожарного насоса (Н подпора) 25,557 м
Результат расчетов параметров системы:
Q системы = 38,177 л/с Q пожарного насоса = 137,44 м 3 /ч
P системы = 0,4508 МПа Н пожарного насоса = 45,08 м.вод.ст.

Интенсивность орошения защищаемой площади с учетом орошения зоны спринклера совместно с соседними спринклерами по результатам расчетов получена i=0,318 л/(с · м2), что обеспечивает требуемую интенсивность i=0,12 л/(с · м2).

Производительность моноблочной насосной установки на отм. -0,150 в пом.Г.1.79 (Насосная ВПТ) 1-го этажа принята из условия обеспечения основным пожарным насосом расхода воды Q » 137,5 м3/ч и давления подачи Н=46,0м (эта цифра из графика насоса Q-H), жокей-насос принят с расходом воды Q » 5,45 м3/ч и давления подачи Н=54,4 м.

Данный расчет Вы можете скачать бесплатно (для личного пользования):

  • расчет в формате Word —
  • принципиальная расчетная схема в формате ПДФ —

Информация на сайте является интеллектуальной собственностью. Просьба ее не распространять на других сайтах.

Гидравлический расчет спринклерной или дренчерной сети имеет своей целью:

Определение расхода воды, т.е. интенсивности орошения или удельного расхода, у "диктующих" оросителей (наиболее удаленных или высоко расположенных);

Сравнение удельного расхода (интенсивности орошения) с требуемым (нормативным), а также определение необходимого давления (напора) у водопитателей и наиболее экономных диаметров труб.

Подробная методика расчета гидравлических сетей спринклерных и дренчерных установок пожаротушения водой и водными растворами, агрегатных АУП тонкораспыленной водой, АУП с принудительным пуском и спринклерно-дренчерных АУП приведена в приложении В. Ответственным этапом гидравлического расчета является выбор оросителя и определение давления, которое необходимо обеспечить у "диктующего" оросителя.

При определении параметров оросителя необходимо учитывать некоторые технические характеристики, которыми являются:

Расход огнетушащего вещества;

Интенсивность орошения;

Максимальная площадь орошения, в пределах которой обеспечивается требуемая интенсивность, расстояние между оросителями.

Расход оросителя Q (дм3/с) определяется по формуле:

где К - коэффициент производительности,

Р - давление перед оросителем, МПа.

Важнейший параметр - коэффициент производительности, то есть способность оросителя пропустить через себя определенное количество воды, в свою очередь, зависит от величины выходного отверстия оросителя: чем больше отверстие, тем больше коэффициент.

Для вычисления расхода Q, нужно определить необходимое давление Р у оросителя при заданной интенсивности орошения.

Один из способов определения необходимого давления у оросителя, это определение давление по графику зависимости интенсивности орошения оросителей от давления (рис. 4.1), приведенный в технической документации. По графику, по определенной интенсивности и выбранному диаметру условного прохода оросителя определяют необходимое минимальное давление.

Как видно из графика для интенсивности орошения 0,12 дм 3 /м 2 подходят три типа оросителя - «СВН-К115», «СВН-К80» и «СВН-К57». Выбирают ороситель, который обеспечивает заданную интенсивность при меньшем давлении, в нашем случае это «СВН-К115» по паспорту CBO0-PHо(д)0,59-R1/2/P57.B3 - (диаметр выходного отверстия 15мм., коэффициент производительности К = 0,59). При выборе оросителя нужно, также учитывать, что минимальное давление у большинства оросителей, при котором обеспечивается работоспособность оросителя, согласно паспортным данным 0,1 Мпа.

Ороситель «СВН-К115» обеспечивает интенсивность орошения 0,12 дм 3 /м 2 при давлении 0,17 МПа (рис. 4.1).


Рис. 4.1. График зависимости интенсивности орошения оросителей от давления.

Согласно расчет расхода установки определяют из условия одновременной работы всех спринклерных оросителей смонтированной на защищаемой диктующей площади, определенной по таблице 5.1-5.3, с учетом того обстоятельства, что расход оросителей, установленных вдоль распределительных труб, возрастает по мере удаления от "диктующего" оросителя. При этом общая защищаемая площадь может быть во много раз больше, а количество оросителей - достигать 800 или 1200 при использовании сигнализаторов потока жидкости.

Расстановка оросителей производится с учетом максимального расстояния, рассчитывается расход воды в пределах защищаемой диктующей площади установленной в таблице 5.1. Производится проверка расчета распределительной сети спринклерной АУП из условия срабатывания такого количества оросителей, суммарный расход которых на принятой защищаемой орошаемой площади составят не менее нормативных значений расход огнетушащего вещества приведенный в таблицах 5.1-5.3. Если при этом расход будет менее указанной в таблицах 5.1-5.3, то расчет должен быть повторен при увеличении количестве числа оросителей и диаметров трубопроводов распределительной сети. Пересчет сети, может повторятся многократно.

Авторами пособия, для упрощения, при произведении гидравлического расчета в учебных целях, предлагается определять количество оросителей для защиты минимальной диктующей площади и их расстановки по формуле:

где q 1 — расход ОТВ через диктующий ороситель, л/с;

Q н — нормативный расход спринклерной АУП согласно таблицам 5.1-5.3 СП-5.13130.2009

В результате этого допущения, итоговый расчетный расход на 10-15% будет превышать нормативный, но сам расчет значительно упрощается.

Для примера произведем расстановку оросителей автоматической установки водяного пожаротушения текстильного предприятия с параметрами установки:

Интенсивность орошения водой - 0,12 л/(с*м 2);

Расход огнетушащего вещества - не менее 30 л/с;

Минимальная площадь орошения - не менее 120 м 2 ;

Максимальное расстояние между оросителями - не более 4 м;

Минимальное давление, которое необходимо обеспечить у диктующего оросителя Р = 0.17 Мпа (Рис.4.1.);

Расчетный расход воды через диктующий ороситель, расположенный в диктующей защищаемой орошаемой площади, определяется по формуле:

K — коэффициент производительности оросителя, принимаемый по технической документации на изделие, л/(с·МПа 0,5);

Минимальное расчетное количество оросителей необходимое для защиты диктующей площади:

где Q н = 30 л/с — нормативный расход спринклерной АУП согласно таблицам 5.1.

Расстановка оросителей, на выделенной минимальной диктующей площади представлена на рис. 4.2. При расстановке необходимо учитывать, что расстояние между оросителями не должно превышать нормативные расстояния указанные в таблицах 5.1.

Рис. 4.2 Схема размещения оросителей

Дальнейший расчет установки связан с определением:

Диаметров трубопроводов;

Давления в узловых точках;

Потерь давления в трубопроводах, узле управления и запорной арматуре;

Расхода на последующих от диктующего оросителях в пределах защищаемой площади;

Определение суммарного расчетного расхода установки.

Для наглядности трассировка трубопроводной сети по объекту защиты изображается в аксонометрическом виде (рис. 4.3).

Рис.4.3 Аксонометрический вид спринклерной установки водяного пожаротушения по симметричной тупиковой схеме

Компоновка оросителей на распределительном трубопроводе АУП согласно может выполнятся по тупиковой или кольцевой схеме, симметричная и несимметричная. На рис. 4.3 представлена спринклерная установка водяного пожаротушения по симметричной тупиковой схеме, на рис. 4.4. по кольцевой несимметричной схеме.

Рис.4.4 Аксонометрический вид спринклерной установки водяного пожаротушения по несимметричной кольцевой схеме

Диаметр трубопроводов может назначаться проектировщиком либо рассчитываться по формуле:

где d — диаметр определяемого участка трубопровода, мм;

Q — расход на определяемом участке трубопровода, л/с;

v — скорость движения воды, должна составлять не более 10 м/с, а во всасывающих — не более 2,8 м/с;

Потери давления на участке трубопровода определяется по формуле:

где L - длина трубопроводного участка в котором рассчитываются потери давления;

К т удельная характеристика трубопровода, определяется по таблице В.2 Приложения В.

После определения давления в точке а (рис.4.3) и суммарного расхода оросителей первого рядка определяется обобщенная характеристика первого рядка по формуле:

Поскольку второй и третий рядки идентичны первому, после расчета потерь давления между первым и вторыми рядками, обобщенная характеристика используется для определения расхода второго рядка. Расход третьего рядка рассчитывается аналогично.

Давление пожарного насоса, по схеме, представленной на рис. 4.3, складывается из следующих составляющих:

где Р е — требуемое давление пожарного насоса, МПа;

Р в-г — потери давления на горизонтальном участке трубопровода, МПа;

Р г-д — потери давления на вертикальном участке трубопровода, МПа;

Р М — потери давления в местных сопротивлениях (фасонных деталях), МПа,;

Р уу — местные сопротивления в узле управления (сигнальном клапане, задвижках, затворах), МПа;

Р в — давление у диктующей защищаемой площади, МПа;

Z — пьезометрическое давление (геометрическая высота диктующего оросителя над осью пожарного насоса), Мпа; Z = Н /100;

P ВХ — давление на входе пожарного насоса (определяется согласно варианту), Мпа.

Спринклерная система водяного пожаротушения практична и функциональна. Она применяется в рамках развлекательных объектов, хозяйственных и производственных построек. Основная особенность спринклерных линий — наличие оросителей с полимерными вставками. Под воздействием высоких температур вставка сплавляется, активируя процесс пожаротушения.

Схема спринклерной системы пожаротушения

В состав типовой системы входят следующие элементы.

  • Управляющие модули.
  • Трубопровод.
  • Спринклерные оросители.
  • Управляющий модуль.
  • Задвижки.
  • Импульсный модуль.
  • Компрессорное оборудование.
  • Измерительные приборы.
  • Насосная установка.

При расчете систем тушения пожара учитываются параметры помещения (площадь, высота потолков, планировка), предписания отраслевых нормативов, требования технического задания.

Расчет спринклерных установок водяного пожаротушения должны осуществлять квалифицированные специалисты. Они располагают профильными измерительными приборами и необходимым программным обеспечением.

Преимущества системы

Спринклерные системы пожаротушения обладают множеством достоинств.

  • Автоматическое срабатывание при возникновении возгорания.
  • Простота основных рабочих схем.
  • Сохранение эксплуатационных характеристик на протяжении длительного срока.
  • Удобство обслуживания.
  • Приемлемая стоимость.

Недостатки системы

К минусам спринклерных систем относится.

  • Зависимость от штатной линии подачи воды.
  • Невозможность применения на объектах с высокой степенью электрификации.
  • Сложности при использовании в условиях отрицательных температур (требуется применение воздушно-водных решений).
  • Непригодность оросителей к повторному использованию.

Пример расчета спринклерной установки водяного пожаротушения

Гидравлический расчет спринклерной системы пожаротушения позволяет определить рабочие показатели давления, оптимальный диаметр трубопровода и производительность линии.

При расчете спринклерного пожаротушения в части расхода воды используется следующая формула:

Q=q p *S, где:

  • Q — производительность оросителя;
  • S — площадь целевого объекта.

Расход воды измеряется в литрах в секунду.

Расчет производительности оросителя производится по формуле:

q p = J p * F p , где

  • J p — интенсивность орошения, установленная нормативными документами, в соответствии с типом помещения;
  • F p — площадь покрытия одного спринклера.

Коэффициент производительности оросителя представлен в виде числа, не сопровождается единицами измерения.

При расчете системы инженеры определяют диаметр выходных отверстий оросителей, расход материалов, оптимальные технологические решения.

Если вам требуется расчет спринклерной системы пожаротушения, обратитесь к сотрудникам «Теплоогнезащита». Специалисты быстро справятся с задачей, предоставят рекомендации по решению типовых и нестандартных вопросов.