Лазерная сигнализация для дома своими руками схемы. Лазерная сигнализация для дома своими руками

Сложные покупные системы безопасности и серьёзные сигнализации нужны не всегда да и не каждому по карману. Их стоимость, монтаж и обслуживание оправдано в случае охраны дорогих объектов. Если же необходимо установить систему безопасности на даче или в гараже, да и в квартире или доме, то затраты на готовую хорошую покупную сигнализацию зачастую не совместимы с Вашим бюджетом. От предлагаемых на рынке дешевых охранных сигнализаций лучше отказаться (особенно с радио управлением - их давно научились сканировать и отключать без каких либо проблем). В этом случае проще и однозначно в разы дешевле сделать простую самодельную сигнализацию , например, как один из вариантов, лазерную охранную сигнализацию.

На сегодняшний день существует много разнообразных схем лазерной сигнализации, но, как правило, такие устройства имеют достаточно сложную конструкцию. Ни одна самодельная схема такого устройства не обходится без микросхем и не совсем простой обвязки. Потом еще предстоит настройка и запуск, подбор конденсаторов, резисторов и т.д. Микросхемы тоже надо уметь паять. Можно вывести из строя перегревом или статикой и долго разбираться почему лазер не работает. Поэтому предлагаем упростить этот самый муторный кусок схемы и взять уже готовый китайский лазер (в любом магазине игрушек - стоит он не дорого - все готово и корпус и линзы и схема). Собрать же остальную схему под силу любому начинающему радиолюбителю.

Схема в этой постой лазерной охранной системе, реагирует на прерывание луча и состоит из излучателя (собственно лазерной указки) и приемника, можно использовать промежуточные зеркала, необходимые для переотражения луча и устройства оповещения - отпугивателя (сирена, свет). Возможно подключить и другие устройства оповещения, например, мобилку для передачи СМС или просто звонка (Под этим номером у Вас будет клиент - "Сработала сигнализация"). Испытания данной системы прошли успешно и эксплуатируется по сей день.

Работает сигнализация следующим образом - когда зону луча пересекает человек, лазер перестает освещать фотоэлемент его сопротивление увеличивается и происходит отключение реле. С отключением реле выключается и лазер (это сделано для того, чтобы после того как человек выйдет из зоны активации лазер не продолжал освещать фотоэлемент потому, что в таком случае сигнализация сработает на секунду и замолчит). Это простейшая схема.

Когда лазер освещает фотоэлемент, последний в цепочке работает в качестве провода, а когда лазер отключен, он превращается в резистор с большим сопротивлением. Фотоэлемент (фоторезистор) нужно установить закрытом со всех сторон корпусе, а трубка сделана из корпуса ручки и обклеена черной изоляционной лентой во избежания проникновения и попадания света на фотоэлемент.

Как уже сказали, в качестве лазера используется готовый модуль - игрушечный лазер с красным излучателем, питается от 3-x батареек с напряжением 1,4 каждая. На лазер припаяны провода,поскольку он будет питаться от блока питания с напряжением 4-4,5 вольт, так как батарейки для нас не выход. Лазер подключен к источнику питания не впрямую, а через резистор с сопротивлением 5 ом. Мощность сопротивления 1 ватт. Зона активации может достигать до 10 метров в длину.

Реле имеет три контакта которые отключают лазер и включают сирену. Реле можно сделать самому или же подобрать готовое. У меня использовалось готовое реле но с перемотанной обмоткой, поскольку реле изначально работало от 12 вольт. Обмотка реле содержит 60 витков провода диаметром 0,4 мм.

Остальную часть конструкции - устройство оповещения - отпугивания можно применить готовое или тоже сделать самостоятельно. Один из вариантов.
Усилитель мощности выполнен на очень распространенной интегральной микросхеме TDA2005. Усилитель собран по мостовому варианту включения, этим обеспечивается достаточно большая выходная мощность в 20 ватт! Модуль с усилителем не устанавливают на радиатор как это обычно делают, поскольку усилитель работает от пониженного источника питания в 4 - 4,5 вольт, к тому же он почти все время выключен.

Емкость входного конденсатор можно изменять в большом диапазоне. Чем меньше емкость конденсатора, тем выше и стервознее становится звук сирены. Также можно использовать усилитель на микросхеме TDA2003, но результат чуть xуже (громкость воя сирены будет в два раза меньше). Динамическая головка типа 25 гдн или аналогичная. Возможно применения пьезоголовок (с пьезоголовкой результат намного лучше). Генератор звука (имитатор сирены, собран на логичном элементе К155ЛАЗ.)

Схема такого генератора во многом сходна со схемой транзисторного симметричного мультивибратора. Импульсы, генерируемые элементами микросхемы, преобразуются динамической головкой в звуковые колебания. Длительность импульсов определяется емкостями С1, С2 и сопротивлениями R1 и R2. Устройство состоит из двух генераторов: тактовых импульсов и звуковой частоты. Первый выполнен на элементах DD1.1 и DD1.2, а второй - на DD1.3 и DD1.4. Каждый из генераторов собран по несимметричной схеме. Имитация звука сирены достигается за счет того, что тактовый генератор управляет работой генератора звуковой частоты. Динамическая головка BА1 звучит в те промежутки времени, когда на входе 13 элемента DD1.3 появляется логическая "1". С выхода 6 элемента DD1.2 следуют прямоугольные импульсы, управляющие звуковым генератором, частота которых зависит от номиналов С1 и R1. Привожу вам два варианта имитаторов звука сирены, какой собрать решайте сами. Динамическую головку нужно убрать из схемы имитатора и подключить к вxоду усилителя мощности звуковой частоты.

Блоком питания служит обыкновенный сетевой трансформатор на 20 ватт. Поскольку вся сигнализация питается от напряжении 4 - 4,5 вольт, нужно взять сетевой трансформатор с напряжением 12 или 6 вольт и чуть переделать вторичную обмотку. Первичная обмотка содержит 40 витков провода с диаметром 0,7 мм (с числом витков нужно поэкспериментировать, главное иметь рабочее напряжение 4 - 4,5 вольт. После завершения отдельных устройств (имитатор, датчик, усилитель мощности) приступаем к сборке устройства. Самое сложное - датчик. Лазер нужно поставить так, чтобы его луч был направлен прямо в трубку с фотоэлементом и обеспечивал его работу.

Включаем устройство так - сначала включаем выключатель, затем нажимаем на кнопку которая активирует лазер и быстро опускаем кнопку (кнопка без фиксации). В моем устройстве применены два усилителя мощности для получении более громкого звука. Датчик с реле собран в корпусе от китайского фонаря. Дальше после установки и включения идем к зоне активации и проходим через нее. Мгновенно сработает реле и сигнализация заработает.

Приведем еще одну схему приемника лазерной охранной сигнализации на транзисторах


Данная схема охранной сигнализации представляет собой датчик пересечения кем то не было лазерного луча. Схема состоит из двух основных блоков:
1. фотореле (VT1, VT2);
2. реле времени (VT3, VT4).

Работает схема следующим образом.
Датчиком фотореле выступает фоторезистор R1, включенный в цепь базы транзистора VT1 последовательно с ограничивающим резистором R2. Темновое сопротивление фоторезистора достаточно велико. Коллекторный ток транзистора VT1 в это время мал и транзистор VT2 находится в открытом состоянии. Его коллекторный ток протекает через обмотку реле KV1 тем самым удерживая контакты в замкнутом положении. При освещении фоторезистора его сопротивление уменьшается, что приводит к увеличению тока базовой цепи транзистора VT1, а следовательно и к увеличению его коллекторного тока. Падение напряжения на резисторе R4, созданное протеканием коллекторного тока транзистора VT1 закрывает транзистор VT2 и реле KV1 отключается. Таким образом при освещении лазерным лучем фоторезистора реле KV1 отключено, а при пересечении луча злоумышленником оно сработает, своим контактом KV1.1 запустит реле времени и снова вернется в исходное состояние.
Реле времени работает следующим образом. В исходном состоянии, когда контакт KV1.1 разомкнут напряжение на конденсаторе C1 равно нулю. В это время транзисторы VT3 и VT4 закрыты, ток через обмотку реле KV2 не течет и его контакты, включающие исполнительный механизм разомкнуты (контакты на схеме не указаны). При кратковременном срабатывании реле KV1 конденсатор C1 заряжается и тут же начинает разряжаться через эмиттерный переход транзистора VT3 и резистор R8, при этом транзисторы VT3 и VT4 откроются, реле KV2 сработает и своими контактами включит исполнительный механизм.
После разряда конденсатора схема возвращается в исходное состояние. Резистором R6 можно регулировать выдержку времени.

В рабочем состоянии, при пересечении злоумышленником лазерного луча сработает схема и запустится система оповещения (например звуковая или световая сигнализация), через некоторое время отключится и снова будет ждать нарушителя, то есть вернется в исходное состояние без вмешательства. Это особенно важно для охраны удаленных объектов, например гаража или дачи.

Луч лазера имеет очень маленький процент расходимости, поэтому с его помощью можно контролировать довольно большие расстояния периметров. Применив систему зеркал можно контролировать любые сложные помещения, только стоит учитывать, что зеркала должны быть качественными и чистыми.

Итак, для охраны какого-либо объекта на нем необходимо закрепить зеркало-отражатель (достаточно кусочка размером 1 х 1 см) и установить приемник и излучатель так, чтобы луч попадал на фоточувствительный элемент, отразившись от зеркала.

Однако в этом случае даже при незначительном смещении (или колебании) охраняемого объекта луч выходит из окна приемника и система срабатывает.
С целью несколько снизить чувствительность системы, чтобы она не срабатывала при колебаниях почвы, например, из-за проезжающего тяжелого транспорта, необходимо немного изменить оптическую схему, сделав вход фотоприемника таким, как на рисунке.

Приемник для лазерной системы охраны
1-линза, 2-бленда-тубус, 3-фотоприемник, 4-корпус

Для этого надо вставить в бленду-тубус собирающую линзу с фокусным расстоянием F. Диаметр этой линзы и будет определять чувствительность системы (здесь имеется в виду не электрическая чувствительность фотоприемника, а чувствительность, относящаяся к интенсивности воздействия на охраняемый объект).

Если при колебаниях зеркала отраженный от последнего луч лазера не выходит за пределы линзы, то датчик не срабатывает. Следовательно, меняя диаметр линзы, можно регулировать чувствительность системы охраны.

Альтернативой тепловым датчикам на современном рынке сигнализаций является ни что иное, как лазер. Подобные системы используются для охраны индустриальных, военных и банковских объектов.

В быту лазерная сигнализация пока не нашла широкого применения, однако, если есть растущие из нужного места руки и базовые навыки обращения с паяльником, можно самостоятельно сделать вполне работоспособный образец или заказать готовую модель.

Лазерная сигнализация – это специальное чувствительное устройство, простая схема которого основывается на взаимодействии лазерного луча и сирены. Пересекая лазерную «растяжку» срабатывает сигнализация, которую слышно в радиусе 100 метров . Она предназначена как для сигнала тревоги для охраны, так и для отпугивания преступников. Ещё существует смс-информирование или отправка голосового сообщения в качестве уведомления об опасности. Отметим, что редко используют лазерный сигнал из-за потери мощности и зависимости от метеоусловий.

Базовые блоки

Лазерный извещатель состоит из следующих элементов:

  • генератора;
  • блока питания;
  • лазера;
  • реле;
  • цифровой микросхемы;
  • фотоэлемента;
  • звуковой извещатель (для пущего эффекта может применяться и светодиодная лампочка).

Обычно устанавливаю такой агрегат ближе к полу на расстоянии в 25-35 см, чтобы особо невнимательные грабители либо не заметили его, либо не смогли свободно проползти под ним или перепрыгнуть.

Закрепляют лазер, блок питания и реле с одной стороны, а фотоэлемент крепится на другой стене так, чтобы луч попадал на линзу.

Когда охранная сигнализация данного типа задействована, луч проходит по прямой линии к фотоэлементу. Так как пучок света преодолевает большое расстояние и не рассеивается, то его можно отражать неопределённое количество раз при помощи обычных зеркальных поверхностей , направленных под определённым углом друг к другу. Это помогает создать запутанный лабиринт, пройти который, не задев такую «растяжку», практически невозможно.

Если вор-неудачник пересечёт луч, сигнал не поступает к фотоэлементу, возникает сопротивление и реле блокируется. Таким образом реле передает сигнал резистору, а последний - извещателю.

Сразу после нарушения в зоне активации лазер также прекращает работу , чтобы не задействовать фотоэлемент снова, иначе сигнал тревоги прервётся. Полностью выключить сигнализацию можно лишь отключив питание.

Чтобы сигнализация не срабатывала от обычных солнечных лучей или иных источников света фоторезистор имеет специальную изоляцию.

Схемы

На основе контроллера Arduino

Для сборки схемы понадобится детский лазер и фоторезистор.

На лазере есть кнопка, которая включает свечение. Вот пошаговая инструкция сборки настоящей, вполне работоспособной сигнализации.

  1. Разберите лазер, сняв насадку. Выньте батарейки и вытащите само устройство.
  2. Кнопку необходимо отпаять, после чего продеть в отверстие на корпусе провод и припаять его к кнопке.

Важно! Не допускайте перегрева контактов, все детали очень хрупкие.

  1. Соберите приборчик в обратном порядке.
  2. Фоторезистор необходимо поместить в закрытое пространство, чтобы исключить попадание лучей света (иначе не будет работать днём). Можно использовать коробок или тёмный пластиковый контейнер, укрепив изолентой.
  3. Фоторезистор монтируйте к контроллеру по приведёной схеме. Сопротивление резистора 10 кОм.
  4. Подключите контроллер к компьютеру и запустите среду Arduino IDE .
  5. Залейте следующий скетч

void setup()

Serial.begin(9600);

void loop()

Serial.println(analogRead(foto)); //Выводим на монитор последовательного порта значения с фоторезистора

delay(20);

  1. Установите датчик напротив лазера, добившись прямого попадания луча на фотоэлемент.
  2. В программаторе откройте “монитор последовательного порта” и отследите полученные значения. На их основе определите пороговую величину срабатывания сигнализации.
  3. Светодиод подключите к пину №5 контроллера и добавьте новый скетч.

#define foto 0 //Фотоэлемент подключен к пину 0 (аналоговый вход)

#define led 5 //светодиод подключен к 5 пину

void setup()

Serial.begin(9600);

pinMode(led, OUTPUT);

void loop()

if (analogRead(foto) < 930) //Значение меньше порогового

for (int i=0 ; i < 10 ; i++)

digitalWrite(led , HIGH);

delay(500);

digitalWrite(led , LOW);

delay(500);

else digitalWrite(led , LOW);

Итог. При прерывании луча значение сигнала на последовательном порте падает ниже пороговой величины. При этом контроллер выдаёт сигнал на светодиод, тот начинает мигать.

Смотрите видео демонстрацию работы устройства

Дальнейшее наращивание схемы и подключение дополнительных элементов проводите по вкусу. Отличный вариант – для получения сигнала на свой сотовый.

На тиристоре BT169

Для сборки потребуются следующие элементы.

  • тиристор BT169;
  • конденсатор;
  • резисторы 47k;
  • фоторезистор или LDR;
  • светодиод;
  • бытовой лазер;

Монтаж осуществляется согласно приведенной схеме.

Принцип действия аналогичен предыдущей модели – при прерывании луча фоторезистор блокирует схему. Тиристор работает как переключатель, подавая сигнал на звуковой сигнал или светодиод. Подробности монтажа и использования смотрите на ролике.

На микросхеме NE555

Необходимые элементы

  • piezo buzzer (пищалка);
  • резистор 750 Ом;
  • резистор 130 кОм;
  • микропереключатель;
  • фоторезистор;
  • микросхема интегрального таймера NE555.

Микросхема имеет широкий диапазон питающих напряжений: от 4.5 до 18 В, выходной ток достигает 200 мА. Сопротивление резисторов R1 и R2 рассчитывается в зависимости от напряжения питания.

Сборка по схеме не представляет особых затруднений. Следует учесть порядок выводов NE555, чтобы не сжечь микросхему.

За запуск отвечает вторая ножка, на неё нельзя подавать более 30% напряжения питания, за останов шестая ножка (не более 70% напряжения питания).

В остальном схема работает по классическому принципу – при отсутствие сигнала на фоторезисторе, повышается напряжение на шестой ножке, в результате подаётся питание на звуковой сигнал. Выключение с помощью микропереключателя.

Заключение

На основе простого механизма строится мощная и надёжная система охраны для предприятий и финансовых учреждений. Для применения в быту вы можете либо сами сделать систему защиты по своему вкусу, либо заказать готовый комплект в китайских интернет-магазинах, естественно, без всяких гарантий качества. Важный плюс – сравнительно небольшие энергозатраты делают лазерную сигнализацию

Всем салют! Если в вашем районе не раз совершались ограбления или есть такая опасность, а вам хочется спать ночью спокойно, то вы наверняка задумывались над вопросом: а не поставить ли мне сигнализацию?.
Но сложные системы безопасности не всегда по карману, да и на монтаж и обслуживание приходится тратить и тратить. Правда есть и дешевые сигнализации, но злоумышленники уже давно научились выключать их, поэтому, сегодня я вам покажу, как самому сделать простую и недорогую лазерную охранную сигнализацию.

Схема лазерной сигнализации

Так как сегодня много схем, я показал вам, на мой взгляд, самую актуальную, с использованием очень популярной микросхемы NE555.

Для сборки нам пригодятся следующие компоненты: piezo buzzer (который будет издавать сигнал), два резистора (750 Ом, 130 кОм), микропереключатель , фоторезистор ну и микросхема интегрального таймера NE555 .

Немного о таймере NE555

Был разработан 1972 году компанией Signetics. Он имеет широкий диапазон питающих напряжений: от 4.5 до 18 В, выходной ток достигает 200 мА, а микросхема сама потребляет не много. Точность работы микросхемы не зависит от питающего напряжения. Внутри таймера немало элементов: около 20 транзисторов и много других деталей.

Микросхема имеет восемь ножек:

  1. Земля
  2. Запуск
  3. Выход
  4. Сброс
  5. Контроль
  6. Разряд
  7. Питание

Важно помнить, что на вторую ножку (запуск) нужно подавать не более 1/3 напряжения питания, а на шестую ножку (стоп) 2/3 напряжения питания!

Вернемся к нашему лазеру. Лазерный луч направлен на фоторезистор. Когда он не облучается, это приводит к повышению напряжения на шестой ножке микросхемы, в результате чего включается пищалка. Выключить динамик можно нажав на микропереключатель. Смотрим короткое видео:

Выбор резистора R1 и R2 зависит от напряжения питания. Например у меня напряжение питания 4,5 В, поэтому я выбрал резисторы R1- 130 кОм, R2 — 750 Ом. Так как батарейки лазера быстро садятся, лазер можно подключить к более мощному питанию, обычно с напряжением 4,5 В.

С помощью нескольких зеркал можно покрыть лучами всю комнату, главное чтобы последнее зеркало направляло луч прямо в центр резистора .

Лазерная сигнализация будет предупреждать вас всегда, когда вы рядом, но можно и подключить более серьезную схему: например с SMS оповещением. Если интересно, дайте знать. Вот и все, спите спокойно, хороших снов!

С уважением, Эдгар.

Такой вид сигнализации является одним из составляющих современных охранных систем. Их достоинство в надежности – они практически не взламываются, их невозможно обойти. Благодаря лазерной сигнализации уровень защищенности любого объекта, в сравнении с традиционными способами и устройствами, повышается.

У лазерных охранных систем много преимуществ:

  • Мобильность: модули легко переносятся с места на место, их можно располагать в различных местах;
  • Лазеры легко спрятать так, что о их присутствии преступник не узнает до появления сотрудников охраны;
  • Элементы, которые входят в систему охраны, легко сочетаются с любым интерьером, не портят его своим присутствием;
  • Возможность работать с сиренами, с выводом сигнала на пульт.

К их недостаткам относится большая стоимость; их сложно устанавливать и настраивать.

Основой сигнализации является лазер, который включается в систему охраны. Последние обладают достаточно высокой сложностью, потому дорогие. Отказываться от них не стоит – нужно попытаться сделать лазерную сигнализацию своими руками. Как показывают разработки умельцев, это требует нескольких устройств и комплектующих, которые можно приобрести довольно дешево. В итоге получается эффективная сигнализация на основе лазера.

В самодельной сигнализации применяют лазер и фотоприемник. Из лазера выходит луч, который принимается фотоприемником. При этом сопротивление последнего близко к нулю. Если луч чем-то перекрывается, то сопротивление фотоэлемента резво возрастает. Это приводит к разбалансировке электронной схемы, к которой подключены оба прибора, к включению исполнительных устройств и срабатыванию сигнализации.

При желании сделать лазерную сигнализацию своими руками, следует приобрести: лазерную указку, которая будет генерировать лазерный луч; фотоэлемент, у которого под воздействием светового потока меняется сопротивление; реле, которым будет подключаться, к примеру, звуковая сирена. Не делается система без инструментов и материалов для пайки, проводов, корпусных деталей, монтажных принадлежностей.

Схему лазерной сигнализации можно построить на основе таймера NE555, которым будет управляться ее работа.

«Плюсовая» цепь от источника питания подается на «плюс» звуковой сирены; «минусовая» – на 1-й выход таймера. Между ними устроена перемычка через резистор R2 и фоторезистор R3. От перемычки между последними элементами есть отвод к 6-му выходу таймера.

Далее по ходу «плюсовой» цепи устроены отводы: через резистор R1 на 2-й выход таймера и от него, через прерыватель, к «минусу» сирены; к 4-му, затем к 8-му выходам таймера. Кроме того, 3-й выход таймера подключен к переключателю прерывателя.

Когда на фоторезистор падает луч лазерной указки его сопротивление незначительное, потому электроток протекает по первой перемычке схемы через резистор R2 и фоторезисторR3. Когда луч возрастает, сопротивление фоторезистора сильно возрастает и протекание тока по указанной перемычке прекращается – он пойдет на таймер и от него на сирену, которая своим звуком известит о том, что кто-то пересек луч указки.

Рынок систем для защиты объектов от взломов и непредвиденных происшествий насыщен датчиками, которые способствуют установлению всестороннего контроля над жильем. Однако далеко не каждое устройство способно обеспечить надежную охрану, а подключение некачественного дешевого оборудования приводит к непредвиденным проблемам. Как альтернатива датчикам движения, применяется простая и безотказная лазерная сигнализация, которая срабатывает при попадании объекта в спектр луча.

Какой принцип работы сигнализации с лазерным лучом?

Сигнализации с лазерным лучом обычно покупают в готовом комплекте, но при желании их можно изготовить самостоятельно, не затрачивая много сил и средств. Весь принцип работы лазерной сигнализации связан со специальным инфракрасным лучом, который направляется под определенным углом к противоположной стене комнаты, где закреплен фотоэлемент.

Любой объект, попадающий в заданный спектр, создает преломление, способное подать сигнал на специальный извещатель. После подачи сообщения о нарушении, встроенный динамик оповестит жильцов или охрану о проникновении.

В комплект лазерного извещателя входят следующие конструкционные материалы:

  • Реле;
  • Простейшая микросхема от фонарика;
  • Фотоэлемент;
  • Блок питания;
  • Резистор;
  • Извещатель;
  • Генератор.

Благодаря тому, что лазерный светопоток не рассеивается и постоянно направлен в одну сторону, с помощью системы отражателей можно создать разнообразный рисунок, который невозможно обойти. В качестве отражателей применяют небольшие кусочки зеркал, расположенные под определенным углом в разных концах комнаты.

Процесс сборки элементов и деталей лазера

Принцип сборки состоит из последовательного припаивания отдельных элементов сигнализации к плате. В первую очередь требуется определиться с местом, где будет установлен лазерный сигнализатор и фотоэлемент. Чаще всего такие механизмы монтируют в нижней части комнаты на уровне 30 см от пола, что позволяет скрыть устройство от посторонних глаз.

На видео – эксперимент с лазерной сигнализацией:

Установленный лазер с одной стороны стены подсоединяется к реле и блоку питанию, а в противоположном месте, на расстоянии не более 10 м, крепится фотоэлемент с расчетом, что луч будет падать отвесно на линзу. При попадании объекта в спектр луча, фотоэлемент начинает нагреваться, реле передает сигнал резистору, а последний – извещателю.

Оповещатель выступает в роли отпугивателя, издавая сигнал мощностью до 100 Дцб, который можно услышать на расстоянии около 100 м.

В качестве питающего элемента следует применить обычную литиевую батарею, так как она будет потреблять минимальный объем энергии и практически необходима для издания тревожного сигнала.

Современные радиолюбители предлагают для функциональности системы встраивать модуль связи, который даст возможность отправлять SMS либо голосовое сообщение на определенный номер, что позволит не только отпугнуть грабителя, но и попытаться задержать его.